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Abstract
Sharing medical datasets between hospitals is challenging
because of the privacy-protection problem and the massive
cost of transmitting and storing many high-resolution medical
images. However, dataset distillation can synthesize a small
dataset such that models trained on it achieve comparable per-
formance with the original large dataset, which shows poten-
tial for solving the existing medical sharing problems. Hence,
this paper proposes a novel dataset distillation-based method
for medical dataset sharing. We also found that a few param-
eters in the distillation process are difficult to match, which
harms the distillation performance. Based on this observation,
we improve the distillation performance by introducing pa-
rameter pruning. Experimental results on a COVID-19 chest
X-ray image dataset show that our method can achieve high
detection performance even using scarce anonymized images.
The proposed method may make sharing medical datasets be-
tween hospitals more efficient and secure.

Introduction
The sharing of medical datasets is essential in enabling the
cross-hospital flow of medical information and improving
the quality of medical services (Kumar et al. 2021). How-
ever, sharing healthcare datasets between different hospi-
tals faces several thorny issues. Firstly, privacy protection
has been a severe issue hindering the process when shar-
ing medical image datasets from different hospitals (Kaissis
et al. 2020). Second, sharing large-scale high-resolution
medical image datasets increases transmission and storage
costs (Dash et al. 2019). Therefore, the solution to these
problems will significantly promote the development of
medical dataset sharing.

Dataset distillation can synthesize a small dataset such
that models trained on it achieve comparable performance
with the original large dataset (Wang et al. 2018). Although
dataset distillation has been proposed for distilling some
simple datasets, such as MNIST and CIFAR10, its effective-
ness in high-resolution complex medical datasets has not yet
been proved (Zhao and Bilen 2021c). Medical dataset distil-
lation may have potential advantages for solving the exist-
ing medical dataset sharing problems (Li et al. 2020, 2022a).
For example, the size of distilled medical image datasets can
be significantly compressed, and distilled images generated
from noise are automatically anonymized (Dong, Zhao, and

Figure 1: Concept of this study. Our method can improve
the efficiency and security of the sharing of medical datasets
between different hospitals.

Liu 2022). Therefore, it is desirable to explore the potential
of dataset distillation for medical dataset sharing and con-
tribute to real-world applications.

COVID-19 and its variants have rapidly spread world-
wide, influencing the health and life of billions of peo-
ple (Mofijur et al. 2021). Many medical facilities are facing
the challenges of the increasing numbers of COVID-19 in-
fections, including a critical shortage of medical resources,
and many healthcare providers have themselves been in-
fected (Grover et al. 2020). X-ray is widely used in clinical
because of its high speed and low cost. Detecting COVID-
19 from chest X-ray (CXR) images is perhaps one of the
fastest and easiest ways (Minaee et al. 2020). However, shar-
ing COVID-19 datasets between different hospitals also has
the above-mentioned problems.

In this paper, we propose a novel dataset distillation-based
method for medical dataset sharing. The concept of this
study is shown in Figure 1. The recently proposed dataset
distillation method (Cazenavette et al. 2022) by matching
network parameters has been proven effective for several
datasets. However, the dimension of network parameters is
usually large. And we found that a few parameters in the
distillation process are difficult to match, which harms the
distillation performance. Based on this observation, we im-
prove the distillation performance by introducing parame-
ter pruning. We perform experiments on a COVID-19 CXR
image dataset to prove the effectiveness of the proposed
method. Experimental results show that we can achieve
high COVID-19 detection performance even using scarce
anonymized CXR images, hopeful of solving existing prob-
lems of medical dataset sharing.

Our main contributions can be summarized as follows:
• We propose a novel dataset distillation-based method for
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Figure 2: Overview of the proposed method. Our method uses a teacher-student architecture, and the objective is to make
the student network parameters θ̃′i+J match the teacher network parameters θ′i+K . Our method can avoid the influence of the
difficult-to-match parameters on the distilled dataset by pruning the parameters in teacher and student networks.

medical dataset sharing.
• We improve the distillation performance by introducing

parameter pruning.
• We verify the effectiveness of the proposed method on a

real-world COVID-19 CXR dataset.

Related Work
The acquisition of advanced models relies on large datasets
in many fields, which makes storing datasets and training
models expensive. An effective way to solve these prob-
lems is data selection which identifies representative train-
ing samples of large datasets (Bachem, Lucic, and Krause
2017). However, since some of the original data cannot be
discarded, there is an upper limit on the compression rate
of the data selection method. As a solution, dataset distil-
lation can synthesize a small dataset that preserves most
information of the original large dataset. The algorithm of
dataset distillation takes a sizeable real dataset as the in-
put and synthesizes a small distilled dataset. Unlike the
data selection method that uses actual data from the origi-
nal dataset, dataset distillation generates synthetic data with
a different distribution from the original one (Dong, Zhao,
and Liu 2022). Therefore, the dataset distillation method
can distill the whole dataset into several images, or even
only one image (Li et al. 2022a). Dataset distillation has
many application scenarios, such as privacy protection (Li
et al. 2020; Song et al. 2022), continual learning (Wiewel
and Yang 2021; Sangermano et al. 2022), neural architec-
ture search (Such et al. 2020; Zhao and Bilen 2021c), etc.

Since the dataset distillation task was first introduced in
2018 by Wang et al. (Wang et al. 2018), it has gained in-
creasing attention in the research community1. The original
dataset distillation algorithm is based on meta-learning and

1https://github.com/Guang000/Awesome-Dataset-Distillation

optimizes the distilled images with gradient-based hyperpa-
rameter optimization. Subsequently, many works have sig-
nificantly improved the distillation performance with label
distillation (Bohdal, Yang, and Hospedales 2020), gradient
matching (Zhao and Bilen 2021c), differentiable augmen-
tation (Zhao and Bilen 2021a), kernel methods (Nguyen,
Chen, and Lee 2021; Nguyen et al. 2021; Zhou, Nezhadarya,
and Ba 2022), and distribution/feature matching (Zhao and
Bilen 2021b; Wang et al. 2022). The recently proposed
dataset distillation method by matching network parame-
ters has been the new state-of-the-art (SOTA) on several
datasets (Cazenavette et al. 2022). However, a network usu-
ally has a large number of parameters. And we found that a
few parameters are difficult to match in the distillation pro-
cess and harm the distillation performance, which could be
improved.

Methodology
An overview of the proposed method is shown in Figure 2.
The objective of our method is to have the parameters of
the student network trained on the distilled dataset match
the parameters of the teacher networks trained on the orig-
inal dataset. Our method consists of three steps, teacher-
student architecture training, dataset distillation using pa-
rameter pruning, and optimized distilled COVID-19 dataset
generation, which we will show details of in the following
subsections.

Teacher-Student Architecture Training
Before the distillation process, we first train T teacher net-
works on the original COVID-19 dataset D and obtain their
parameters. These time sequences of parameters {θi}I0 are
defined as teacher parameters. Also, network parameters
trained on the distilled dataset Dc at each training step i
are defined as student parameters θ̃i. Our method aims to
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Algorithm 1: Dataset Distillation using Parameter Pruning

Require: {θi}I0 : teacher parameters trained on D; α0: ini-
tial value for α; A: differentiable augmentation func-
tion; σ: threshold for pruning; T : number of distilla-
tion step; J : number of updates for student network; K:
number of updates for teacher network; I+: maximum
start epoch.

Ensure: optimized distilled dataset D∗
c and learning rate

α∗.
1: Initialize distilled dataset: Dc ∼ D
2: Initialize trainable learning rate: α = α0

3: for each distillation step t = 0 to T − 1 do
4: Choose random start epoch i < I+

5: Initialize student network with teacher parameter:
θ̃i = θi

6: for each distillation step j = 0 to J − 1 do
7: Update student network with cross-entropy loss:

θ̃i+j+1 = θ̃i+j − α∇ℓ(A(Dc); θ̃i+j)
8: end for
9: if parameter similarity in θ̃i+J and θi+K is less than

σ then
10: Prune network parameters:
11: θ̃′i+J , θ

′
i+K , θ′i = Prune(θ̃i+J , θi+K , θi)

12: end if
13: Compute loss between pruned parameters:
14: L = ||θ̃′i+J − θ′i+K ||22 / ||θ′i − θ′i+K ||22
15: Update Dc and α with respect to L
16: end for

distill CXR images that induce network parameters similar
to those learned from the original COVID-19 dataset (given
the same initial values). In the distillation process, student
parameters are initialized as θ̃i = θi by sampling from one
of the teacher parameters at a random step i. We set an upper
bound I+ on the random step i to ignore the less informa-
tive later parts of the teacher parameters. Then we perform
gradient descent updates on the student parameters θ̃ with
respect to the cross-entropy loss ℓ of the distilled dataset Dc
as follows:

θ̃i+j+1 = θ̃i+j − α∇ℓ(A(Dc); θ̃i+j), (1)

where j and α represent the number of gradient descent up-
dates and the trainable learning rate, respectively. A rep-
resents a differentiable data augmentation module that can
improve the distillation performance, which was proposed
in (Zhao and Bilen 2021a). Since the data augmentation used
during distillation is differentiable, it can be propagated back
through the augmentation layers to the distilled dataset.

Dataset Distillation Using Parameter Pruning
Next, we get the student parameters θ̃i+J trained on the dis-
tilled dataset Dc from J updates after initializing the stu-
dent network. Meanwhile, we can get the teacher parame-
ters θi+K trained on the original COVID-19 dataset D from
K updates, which are the known parameters that have been
pre-trained. If the similarity of parameters in θ̃i+J and θi+K

is less than a threshold σ, these parameters are recognized
as difficult-to-match parameters and are pruned as follows:

θ̃′i+J , θ
′
i+K , θ′i = Prune(θ̃i+J , θi+K , θi), (2)

where Prune represents a function that transforms the pa-
rameters to a one-dimensional vector and prunes the param-
eters under the threshold at each last distillation step. By
pruning difficult-to-match parameters in teacher and student
networks, the proposed method can avoid the influence of
these parameters on the distilled dataset, which can improve
the distillation performance. The final loss L calculates the
normalized squared L2 error between pruned student param-
eters θ̃′i+J and teacher parameters θ′i+K as follows:

L =
||θ̃′i+J − θ′i+K ||22
||θ′i − θ′i+K ||22

, (3)

where we normalize the L2 error by the distance θ′i − θ′i+K
moved by the teacher so that we can still obtain proper su-
pervision from the late training period of the teacher network
even if it has converged. In addition, the normalization elim-
inates cross-layer and neuronal differences in magnitude.

Optimized Distilled COVID-19 Dataset Generation
Finally, we minimize the loss L using momentum stochas-
tic gradient descent (SGD) and backpropagate the gradients
through all J updates to the student network for updating
the pixels of the distilled COVID-19 dataset Dc and train-
able learning rate α. Note that the process of searching the
optimized learning rate α∗ can act as an automatic adjust-
ment for the number of student and teacher updates (i.e.,
hyperparameters J and K). Since the distilled CXR images
have different visual similarities from the original images,
they are automatically anonymized. The distillation process
of the proposed method is summarized in Algorithm 1. After
obtaining the distilled dataset D∗

c, we can share it with dif-
ferent hospitals and train neural networks for high-accuracy
COVID-19 detection.

Experiments
Dataset and Experimental Settings
The dataset used in our study has four classes, i.e., COVID-
19 (C), Lung Opacity (L), Normal (N), and Viral Pneumo-
nia (V) (Rahman et al. 2021). The number of images in each
class is 3616, 6012, 10192, and 1345, respectively. The res-
olution of CXR images is 224 × 224, and we resized it to
112 × 112 for distillation.

The network used in this study is a sample 128-width
ConvNet (Gidaris and Komodakis 2018) with depth-5,
which is often used in current dataset distillation methods.
The number of pre-trained teacher networks T was set to
100. We found that pruning too many parameters would
cause the model training to crash. Hence, the parameter
pruning threshold σ was set to 0.1, which performed well in
all experiments. And we set the number of distilled images
as 1, 2, 3, 5, 10, and 20 images per class.

For comparative methods, we used the SOTA dataset dis-
tillation method MTT (Cazenavette et al. 2022), we also
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Table 1: COVID-19 detection accuracy when using different numbers of distilled images. IPC denotes images per class.

IPC 1 2 3 5 10 20 Full Dataset
Ours 54.2% 77.3% 78.9% 81.6% 83.5% 84.1% 88.9%MTT 52.5% 76.4% 77.0% 79.3% 82.2% 82.7%

Table 2: COVID-19 detection accuracy of different methods.

Method Ours MTT SKD BYOL SimSiam MAE Transfer From Scratch
Accuracy 84.1% 82.7% 74.2% 68.3% 66.8% 62.3% 53.9% 28.4%

Figure 3: Examples of real and distilled CXR images.

used several SOTA self-supervised learning methods, in-
cluding SKD (Li et al. 2022b), BYOL (Grill et al. 2020),
SimSiam (Chen and He 2021) and MAE (He et al. 2022).
Transfer learning from ImageNet (Deng et al. 2009) and
training from scratch were used as baseline methods. For
MTT, the experimental settings are exactly the same as our
method. Except for the MAE method used ViT-Large (Doso-
vitskiy et al. 2021), all other self-supervised learning meth-
ods used ResNet-50 (He et al. 2022) as the backbone net-
work. We randomly selected 42 images per class (1% of the
training set) for these self-supervised learning methods. All
experiments were conducted using the PyTorch framework
with an NVIDIA Tesla P100 GPU with 16G memory.

Results and Discussion
The test accuracy of COVID-19 detection are shown in Ta-
bles 1 and 2. From Table 1, we can see that the accuracy of
our method increased accordingly as the number of distilled
images grew. Furthermore, the proposed method has higher
COVID-19 detection accuracy than MTT, which shows the
effectiveness of parameter pruning. We also show the upper
bound accuracy of 88.9% when training on the full dataset.
Even with a compression rate of 0.0047, no significant accu-
racy degradation is exhibited. Table 2 shows that our method
achieved high COVID-19 detection accuracy even when us-
ing scarce distilled CXR images. Furthermore, our method
drastically outperformed other SOTA methods with a sim-

pler network and fewer training images. Figure 3 shows
some examples of real and distilled images. We can see that
the distilled images are entirely visually different from the
original images, which shows the anonymization effective-
ness of the proposed method.

The findings of this paper show the effectiveness of
dataset distillation for medical dataset sharing. Although the
experimental results are promising, the proposed method
should be verified on other medical datasets of different dis-
eases for any potential bias. Since the computational over-
head of training and storing teacher parameters is relatively
high, which may not necessarily be available in low-resource
settings. In addition to MTT, we also did some experiments
to verify the usefulness of early distillation algorithms for
medical images, but the results were not very effective and
computationally intensive. Hence we did not present these
results. Furthermore, verifying the validity of distilled med-
ical images on other network structures and in terms of dif-
ferential privacy will be our future work.

Conclusion

We have proposed a novel dataset distillation-based method
for medical dataset sharing. Since the size of the distilled
medical image dataset has been significantly compressed
and the images are also anonymized, the sharing of med-
ical datasets between different hospitals will be more effi-
cient and secure. We also found that a few parameters in
the distillation process are difficult to match, which harms
the distillation performance. Based on this observation, we
improve the distillation performance by introducing param-
eter pruning. Experimental results show that we can achieve
high COVID-19 detection performance even using scarce
anonymized CXR images, hopeful of solving existing prob-
lems of medical dataset sharing.
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