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Abstract

Counterfactual instances are a powerful tool to obtain valu-
able insights into automated decision processes, describing
the necessary minimal changes in the input space to alter
the prediction towards a desired target. Most previous ap-
proaches require a separate, computationally expensive op-
timization procedure per instance, making them impractical
for both large amounts of data and high-dimensional data.
Moreover, these methods are often restricted to certain sub-
classes of machine learning models (e.g. differentiable or
tree-based models). In this work, we propose a deep rein-
forcement learning approach that transforms the optimiza-
tion procedure into an end-to-end learnable process, allowing
us to generate batches of counterfactual instances in a single
forward pass. Our experiments on real-world data show that
our method i) is model-agnostic (does not assume differen-
tiability), relying only on feedback from model predictions;
ii) allows for generating target-conditional counterfactual in-
stances; iii) allows for flexible feature range constraints for
numerical and categorical attributes, including the immutabil-
ity of protected features (e.g. gender, race); iv) is easily ex-
tended to other data modalities such as images.

1 Introduction
Machine learning models are widely adopted across indus-
tries. However, the black-box nature of machine learning
systems makes it difficult to build trust in algorithmic deci-
sion making, especially in sensitive and safety critical areas
where humans are directly affected. For example, when us-
ing machine learning as part of the decision making process
for loan approvals, university admissions or employment ap-
plications, simple rejection feedback can be misinterpreted
or raise serious concerns regarding the ability of an institu-
tion to provide equal opportunities to all applicants.

Counterfactual instances (a.k.a. counterfactual explana-
tions, counterfactuals) (Wachter, Mittelstadt, and Russell
2017; Karimi et al. 2020; Stepin et al. 2021) are a power-
ful tool to obtain insight into the underlying decision pro-
cess of a black-box model, describing the necessary minimal
changes in the input space to alter the prediction towards a
desired target. To be of practical use, a counterfactual should
be sparse—close (using some distance measure) to the origi-
nal instance—and indistinguishable from real instances, that
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is, it should be in-distribution. Thus, for a loan application
system that currently outputs a rejection for a given indi-
vidual, a counterfactual explanation should suggest plausi-
ble minimal changes in the feature values that the applicant
could perform to get the loan accepted leading to actionable
recourse (Joshi et al. 2019).

IN CF Condition
Age 40 40 [40, 45]
Workclass Private Private {Private, Federal-gov, Self-emp-inc}
Education High School grad Masters {High School grad, Bachelors, Masters}
Marital Status Married Married {Married}
Occupation Sales White-Collar {Sales, White-Collar, Admin}
Relationship Husband Husband {Husband}
Race White White {White}
Sex Male Male {Male}
Capital Gain 0 0 [0, 0]
Capital Loss 0 0 [0, 0]
Hours per week 60 60 [60, 60]
Country Latin-America Latin-America {Latin-America}
Prediction  $50/y > $50k/y

Figure 1: Conditional counterfactual instance on Adult
dataset. IN—original instance, CF—counterfactual in-
stance, Condition—feature range/subset constraints. Grayed
out feature values correspond to immutable features. High-
lighted in red, the feature changes required to alter the
prediction of a black-box model (here from ≤ $50k/y to
> $50k/y).

A desirable property of a method for generating counter-
factuals is to allow feature conditioning. Real-world datasets
include immutable features such as gender or race, which
should remain unchanged throughout the counterfactual
search procedure. A natural extension of immutability is to
restrict a feature to a subset or an interval of values. Follow-
ing the same loan application example, a customer might be
willing to improve their education level from a High-school
graduate to Bachelor’s or Master’s, but not further. Simi-
larly, a numerical feature such as Age should only increase
for a counterfactual to be actionable. To enable such fea-
ture conditioning, we propose to use a conditioning vector
to guide the generation process. An example of this sce-
nario on the Adult dataset (Dua and Graff 2017) is shown
in Figure 1 where we enforce feature conditioning and im-
mutability. Our method successfully flips the classification
label by suggesting a change in the Education level, from
High School grad to Master’s, and in the Occupation, from
Sales to White-Collar, producing an actionable counterfac-
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tual explanation with respect to the user-specified feature
constraints.

Previous approaches to finding counterfactual instances
have focused primarily on iterative procedures by mini-
mizing an objective function that favors sparse and in-
distribution results. Some methods are only suitable for dif-
ferentiable models since they require access to model gra-
dients. Moreover, a separate optimization procedure per in-
stance is computationally expensive, making them imprac-
tical for both large amounts of data and high-dimensional
data.

Our contributions. We propose a deep reinforcement
learning approach that transforms the optimization proce-
dure into a learnable process, allowing us to generate batches
of counterfactual instances in a single forward pass. Our
training pipeline is model-agnostic and relies only on pre-
diction feedback by querying the black-box model. Further-
more, our method allows target and feature conditioning,
and is applicable to a variety of tasks such as multi-class
classification and regression. We focus primarily on the tab-
ular data setting and evaluate our method on multiple types
of models and datasets, for which we obtain competitive re-
sults against existing algorithms. Additionally, we show that
our approach is flexible and easily extendable to other data
modalities such as images. In summary, our contributions
are as follows:

• Model-agnostic, target-conditional framework primarily
focused on heterogeneous tabular datasets.

• Flexible feature range constraints for numerical and cat-
egorical features.

• Fast counterfactual generation process since no itera-
tive optimization procedure is required when producing
counterfactual instances.

• Easily extendable framework to other data modalities.

2 Related work
Counterfactual explanation methods have recently seen an
explosive growth in interest by the academic community. We
refer the reader to the recent surveys of Karimi et al. (2020);
Stepin et al. (2021) for a more comprehensive review of the
area.

Most counterfactual explanation methods perturb the
original instance under proximity constraints until the de-
sired model prediction is achieved (Wachter, Mittelstadt,
and Russell 2017; Mothilal, Sharma, and Tan 2020; Cheng,
Ming, and Qu 2020) or conduct a heuristic search (Martens
and Provost 2014; Laugel et al. 2017). These approaches
require a separate optimization process for each explained
instance and often result in out-of-distribution counter-
factuals when the perturbations are applied in the (high-
dimensional) input space. Attempts to generate more re-
alistic, in-distribution counterfactuals include the addition
of auxiliary losses such as the counterfactual’s reconstruc-
tion error using a pre-trained autoencoder (Dhurandhar et al.
2018) or by guiding the perturbations towards class-specific
prototypes (Van Looveren and Klaise 2019). Other methods
leverage pre-trained generative models such as conditional

GANs (Mirza and Osindero 2014; Liu et al. 2019) or varia-
tional autoencoders (Joshi et al. 2019) to improve the realism
of the proposed counterfactuals.

Many of the previous methods rely on gradient-based op-
timization which restricts the application to differentiable
models. In practice we are often only able to query the
model, thus we are interested in the model-agnostic, black-
box setting. This is especially relevant for (mixed-type) tab-
ular data where non-differentiable models such as Random
Forests (Statistics and Breiman 2001) or XGBoost (Chen
and Guestrin 2016) remain very popular. LORE (Guidotti
et al. 2018) is a model agnostic method which, similar to
LIME (Ribeiro, Singh, and Guestrin 2016), learns a local
interpretable surrogate model around the instance of inter-
est. The decision rules learned by the local model are used
to change the original prediction towards a desired target.
Similarly, White and Garcez (2019) extract local rules from
decision trees to generate counterfactual explanations. DiCE
(Mothilal, Sharma, and Tan 2020) aims to generate a diverse
set of black box counterfactual explanations by using deter-
minantal point processes (Kulesza and Taskar 2012) under
both proximity and feature level user constraints. The search
process can be done at random or via a genetic algorithm.
Hashemi and Fathi (2020) follow the same paradigm and re-
fine the sampling procedure to favour in-distribution coun-
terfactuals. Sharma, Henderson, and Ghosh (2019) also use
evolutionary strategies which allow for feature conditioning
to obtain counterfactual explanations. Minimum Observable
(MO) (Wexler et al. 2019) returns the closest instance in the
training set which belongs to the target class. The distance
is measured by a combination of the L1 and L0 norms of
respectively the standardized numerical and categorical fea-
tures.

The methods mentioned so far either need access to a
training set when generating the explanation or rely on a
time consuming iterative search procedure for every ex-
plained instance. This bottleneck can be resolved by us-
ing class-conditional generative models which are able to
generate batches of sparse, in-distribution counterfactual in-
stances in a single forward pass for various data modalities
such as images, time series or tabular data (Van Looveren
et al. 2021; Oh, Yoon, and Suk 2020; Mahajan, Tan, and
Sharma 2019). However, end-to-end training of the coun-
terfactual generator requires backpropagation of the gradi-
ents through the model, limiting the applicability to differ-
entiable models. We propose a model-agnostic counterfac-
tual generator able to generate batches of explanations with
a single prediction. The generator is trained using reinforce-
ment learning (RL) and is able to learn solely from sparse
model prediction rewards. Our method allows for flexible
feature conditioning and can easily be extended to various
data modalities.

3 Reinforcement learning background
Consider a standard model-free RL problem where an agent
learns an optimal behavior policy by repeated interactions
with the environment, intending to maximize the expected
cumulative reward received from the environment. One ap-
proach to learn an optimal policy is to approximate the Q-

2



function, which estimates the reward that an agent will ob-
tain by applying a particular action in a given state. Thus,
if we know the optimal action-value function Q∗(s, a), in a
state s and for any action a, then the optimal policy is given
by a∗(s) = argmaxa Q

∗(s, a).
For a discrete action space, the maximization procedure

requires the evaluation of the state-action pair for the avail-
able actions and retrieving the action that maximizes the Q
function for a given state. On the other hand, for a contin-
uous action space, an exhaustive search is impossible and
alternatively maximizing the Q function through an itera-
tive procedure can be a computational bottleneck. Deep De-
terministic Policy Gradient (DDPG) (Lillicrap et al. 2016)
addresses those issues by interleaving a state-action func-
tion approximator Q (the critic) of Q∗(s, a) with learning
an approximator µ (the actor) for the optimal action a∗(s).
The method assumes that the critic is differentiable with re-
spect to the action argument allowing to optimize the ac-
tor’s parameters efficiently through gradient-based methods.
DDPG approximates the solution of the expensive maxi-
mization procedure through a learnable process, µ(s) ≈
argmaxa Q(s, a).

Similar to other deep Q-learning algorithms (Mnih et al.
2013), DDPG uses a replay buffer for sample efficiency. In-
stead of immediately discarding the current experience, the
method stores it in the replay buffer for later use. Each train-
ing phase consists of sampling a batch of experiences uni-
formly and taking a gradient step. Updates based on old ex-
perience prevent overfitting and increase training stability.

4 Method
4.1 Problem statement
A counterfactual explanation of a given instance represents
a sparse, in-distribution example that alters the model pre-
diction towards a specified target. Following the notation of
Van Looveren et al. (2021), let x be the input instance, M
a black-box model, yM = M(x) the model prediction on x
and yT the target prediction. Our goal is to produce a coun-
terfactual instance xCF = x+ δCF where δCF represents a
sparse perturbation vector such that yT = M(xCF ). Instead
of solving an optimization problem for each input instance,
we train a generative model which models the counterfac-
tual instances xCF directly and allows for feature level con-
straints via an optional conditioning vector c. A conditional
counterfactual explanation xCF therefore depends on the tu-
ple s = (x, yM , yT , c).

Since we don’t assume the model M to be differentiable
we train the counterfactual generator using RL with s rep-
resenting the state and the actor network µ(s) taking the
role of the counterfactual generator. This model-agnostic
training pipeline is compatible with various data modali-
ties and only uses sparse model prediction feedback as a
reward. For a classification model returning the predicted
class label the reward can be defined by an indicator func-
tion, R = 1(M(xCF ) = yT ). The reward for a regression
model, on the other hand, is proportional to the proximity of
M(xCF ) to the regression target yT .

Instead of directly modelling the perturbation vector δCF

in the potentially high-dimensional input space, we first train
an autoencoder. The weights of the encoder are frozen and
µ applies the counterfactual perturbations in the latent space
of the encoder. The pre-trained decoder maps the counter-
factual embedding back to the input feature space. Since µ
operates in the continuous latent space we use the sample
efficient DDPG (Lillicrap et al. 2016) method. For the re-
mainder of the paper, we denote by enc and dec the encoder
and the decoder networks, respectively.

4.2 Target conditioning
The counterfactual generation process generalizes to a vari-
ety of tasks and target types such as multi-class classifica-
tion and regression. For classification tasks, we condition on
a one-hot encoded representation of the target prediction yT
as well as on the predicted label yM on the input instance
x. While conditioning solely on the class labels represents
the most generic use case since it does not require the model
output to be probabilistic (e.g. SVM’s (Cortes and Vapnik
1995)), we could also condition the counterfactual generator
on soft prediction targets such as the probability of the target
class or the full prediction distribution over all the classes.
Note that our approach does not require the ground truth la-
bels and relies only on querying the black-box model. Dur-
ing training, we sample the target prediction yT uniformly
at random from all possible labels, including yT = yM for
the identity mapping.

4.3 Feature conditioning
In many real-world applications, some of the input features
are immutable, have restricted feature ranges or are con-
strained to a subset of all possible feature values. These con-
straints need to be taken into account when generating ac-
tionable counterfactual instances. For instance Age and Mar-
ital Status could be features in the loan application example.
An actionable counterfactual should however only be able to
increase the numerical Age feature and keep the categorical
Marital Status feature unchanged. To achieve this we condi-
tion the counterfactual generator on a conditioning vector c,
constructed by concatenating per-feature conditioning vec-
tors, defined as follows:

• for a numerical feature with a minimum value amin and a
maximum value amax, we append to c the values −pmin,
pmax, where pmin, pmax ∈ [0, 1]. The range [−pmin,
pmax] encodes a shift and scale-invariant representation
of the interval [a−pmin(amax−amin), a+pmax(amax−
amin)], where a is the original feature value. During
training, pmin and pmax are sampled ∼ Beta(2, 2) for
each unconstrained feature. Immutable features corre-
spond to setting pmin = pmax = 0. Features allowed to
only increase or decrease correspond to setting pmin = 0
or pmax = 0, respectively. Following the example in Fig-
ure 1, allowing the Age feature to increase by up to 5
years is encoded in the conditional vector c by taking
pmin = 0, pmax = 0.1, assuming a minimum age of
10 and a maximum age of 60 years in the training set
(5 = 0.1 · (60− 10)).
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• for a categorical feature of cardinality K we condition
the subset of allowed feature values through a binary
mask of dimension K. When training the counterfactual
generator, the mask values are sampled ∼ Bern(0.5).
For immutable features, only the original input feature
value is set to one in the binary mask. Following the ex-
ample in Figure 1, the immutability of the Marital Status
having the current value Married is encoded through the
binary sequence (1, 0, 0), given an ordering of the possi-
ble feature values {Married, Unmarried, Divorced}.

Following the decoding phase, as part of post-processing
(denoted by a function pp), the numerical values are clipped
within the desired range, and categorical values are con-
ditionally sampled according to their masking vector. This
step ensures that the generated counterfactual respects
the desired feature conditioning before passing it to the
model. Note that our method is flexible and allows non-
differentiable post-processing such as casting features to
their original data types (e.g. converting a decoded floating
point Age to an integer: 40 = int(40.3)) and categorical map-
ping (e.g., Marital Status distribution/one-hot encoding to
the Married value) since we rely solely on the sparse model
prediction reward.

4.4 Training procedure
The DDPG algorithm requires two separate networks, an
actor µ and a critic Q. Given the encoded representation
of the input instance z = enc(x), the model prediction
yM , the target prediction yT and the conditioning vector c,
the actor outputs the counterfactual’s latent representation
zCF = µ(z, yM , yT , c). The decoder then projects the em-
bedding zCF back to the original input space, followed by
optional post-processing.

We restrict the components of the embedding represen-
tation to [−1,+1] through a tanh non-linearity. During the
first N steps the latent components are sampled uniformly
from [−1,+1] to encourage exploration. Afterwards, Gaus-
sian noise ϵ ∼ N (0, 0.1) is added to the actor’s output. The
experience is stored in a replay buffer from which we uni-
formly sample during the training phase.

The training step consists of simultaneously optimizing
the actor and critic networks. The critic regresses on the re-
ward R determined by the model prediction, while the ac-
tor maximizes the critic’s output for the given instance. The
actor also minimizes two objectives to encourage the gen-
eration of sparse, in-distribution counterfactuals. The spar-
sity loss Lsparsity operates on the decoded counterfactual
xCF and combines the L1 loss over the standardized nu-
merical features and the L0 loss over the categorical ones.
The consistency loss Lconsist (Zhu et al. 2017) aims to en-
code the counterfactual xCF back to the same latent rep-
resentation where it was decoded from, formally define as
Lconsist = ∥zCF − enc(pp(xCF , c))∥22.

Note that our setup is equivalent to a Markov decision pro-
cess with a one-step horizon, which does not require boot-
strapping to compute the critic’s target, increasing stability
and simplifying the training pipeline. A full description of
the training procedure is presented in Algorithm 1.

Algorithm 1: training loop
Input: M - black-box model; λs, λc - loss hyperparameters;
Output: µ - trained actor network used for counterfactual
generation.

1: Load pre-trained encoder enc, and pre-trained decoder
dec.

2: Randomly initialize the actor µ(·; θµ) and the critic
Q(·; θQ).

3: Initialize the replay buffer D.
4: Define reward function f(·, ·).
5: Define post-processing function pp.
6: for however many steps do
7: Sample batch of input data x.
8: Construct random target yT and conditioning vector

c.
9: Compute yM = M(x), z = enc(x), zCF =

µ(z, yM , yT , c; θµ).
10: Select z̃CF = clip(zCF + ϵ,−1, 1), ϵ ∼ N (0, 0.1).
11: Decode x̃CF = pp(dec(z̃CF ), c).
12: Observe R = f(M(x̃CF ), yT ).
13: Store (x, z, yM , yT , c, z̃CF , R) in the replay buffer D.
14: if time to update then
15: for however many updates do
16: Call training step(µ, Q, pp, λ1, λ2, D)
17: end for
18: end if
19: end for

Algorithm 2: training step
Input: µ - actor network; Q - critic networks; pp - post-
processing function; λs, λc - loss hyperparamters, D - replay
buffer;

1: Sample uniformly a batch of experiences B =
{(x, z, yM , yT , c, z̃CF , R)} from D.

2: Update critic by one-step gradient descent using

∇θQ

1

|B|
∑
B

(Q(z, yM , yT , c, z̃CF )−R)2

3: Compute zCF = µ(z, yM , yT , c; θµ), xCF =
dec(zCF ),

Lmax = − 1

|B|
∑
B

Q(z, yM , yT , c, zCF ),

Lsparsity =
1

|B|
∑
B

[L1(x, xCF ) + L0(x, xCF )],

Lconsist =
1

|B|
∑
B

(enc(pp(xCF , c))− zCF )
2.

4: Update actor by one-step gradient descent using

∇θµ(Lmax + λsLsparsity + λcLconsist)
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Table 1: Counterfactual validity—percentage of generated counterfactuals of the desired target label (mean±std over 5 classi-
fiers and 3 random seeds).

Validity (%)

Method Adult Breast cancer Covertype Portuguese Bank Spambase

LORE 18.08± 5.27 25.95± 34.33 15.19± 7.75 19.07± 9.75 9.53± 5.91
MO 91.00± 1.12 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
DiCE (random) 99.93± 0.16 100.00± 0.00 92.67± 11.04 99.98± 0.04 99.58± 0.60
DiCE (genetic) 33.94± 11.89 60.86± 14.18 72.09± 18.40 90.97± 8.73 40.93± 2.28
Ours 98.59± 0.97 99.24± 0.76 86.81± 13.68 98.27± 1.53 99.18± 0.97

4.5 Handling heterogeneous data types
Our method is versatile and easily adaptable to multiple data
modalities by changing only the autoencoder component. As
opposed to homogeneous data such as images where the ob-
served features share the same likelihood function, tabular
data require more flexibility to capture relations across het-
erogeneous data types. We therefore define the decoder as
a multi-head, fully connected network for which we model
each feature feature individually as follows:
• For a real-valued feature d of an instance x with a

corresponding encoding z, we use a Gaussian likeli-
hood model with constant variance given by p(xd|z) =
N (xd|hd(z), σd), where hd is the decoder head.

• For categorical features we apply one-hot encoding and
model feature values using the categorical distribution.
Following the same notation from above, the proba-
bility for a category k is given by p(xd = k|z) =

exp(−hdk(z))∑K
i=1 exp(−hdi(z)

. where h is the decoder head, and K

is the total number of feature values. During training and
generation, we pick the most probable feature according
to the output distribution.

4.6 Generating explanations
Our counterfactual generation method does not require an it-
erative optimization procedure per input instance and allows
us to generate batches of conditional counterfactual expla-
nations in a single forward pass. This allows the method
to scale to large and high-dimensional datasets. The gen-
eration step requires a user-specified target yT , an optional
feature-conditioning tensor c, and the black-box model M
to label the given input. The pre-trained encoder projects the
test instance onto the latent space where the actor-network
generates the embedding representation of the counterfac-
tual, given the target and feature-conditioning vector. Fi-
nally, we decode the counterfactual embedding followed by
an optional post-processing step which ensures that the con-
straints are respected, casts features to their desired types
and maps categorical variables to the original input space.
We provide a full description of the generation procedure in
Algorithm 3.

5 Experiments
We evaluate our method on multiple data modalities and
various classifiers. We focus primarily on the tabular set-
ting for which we selected five datasets: Adult Census

Algorithm 3: Generating explanations
Input: x - original instance, yT - prediction target, c -
optional feature-conditioning vector, M - black-box model.
Output: xCF - counterfactual instance.

1: Load pre-trained actor µ, encoder enc, decoder dec, and
post-processing function pp.

2: Compute z = enc(x) input encoding representation.
3: Compute yM = M(x) model’s prediction.
4: Generate zCF = µ(z, yM , yT , c) counterfactual embed-

ding.
5: Decode and post-process x̃CF = pp(dec(zCF ), c)

counterfactual instance.

(Dua and Graff 2017), Breast Cancer (Zwitter and Soklic
1988), Covertype (Blackard 1998), Portuguese Bank (Moro,
Cortez, and Rita 2014), Spambase (Dua and Graff 2017).
We test our method on five black-box classifiers: Logis-
tic Regression (LR), Decision Tree (DT), Linear Support
Vector Classifier (LSVC), Random Forest (RF), and XG-
Boost Classifier (XGBC). Optional for lower dimensional
input space such as tabular data, our counterfactual gen-
eration method can leverage a pre-trained autoencoder per
dataset modeled by a simple feedforward neural network.
Note that our optimization procedure is hyperparameter de-
pendent through the sparsity and consistency coefficients λs

and λc, respectively. Although a hyperparameter search can
be conducted for each dataset and each classifier to obtain
the best performances, we decided to use the same configu-
ration (λs = λc = 0.5) throughout all experiments. We not
only achieved competitive results against the existing base-
lines, but also demonstrated the practicality and stability of
our method, discarding any concerns regarding the hyperpa-
rameter selection. More experimental configurations which
include the setting without the pre-trained autoencoder are
provided in the Appendix A.7-A.10.

We compare our methods with three model-agnostic,
gradient-free, tabular-oriented baselines, including their
variants: LORE (Guidotti et al. 2018), Minimum Observable
(MO) (Wexler et al. 2019), and DiCE (Mothilal, Sharma,
and Tan 2020). We analyzed two variants of DiCE: the ran-
dom approach, which incrementally increases the number of
features to sample from, and the genetic approach, which
follows a standard evolutionary procedure. We extend some
baselines to allow immutable features (e.g., race, gender)
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Table 2: Counterfactual sparsity—L0 and L1 distance over standardized numerical features (mean±std over 5 classifiers and 3
random seeds).

Method Adult Breast Cover. Portug. Spam.

L0 L1 L0 L0 L1 L0 L1 L1

LORE 0.09± 0.01 0.11± 0.04 0.11± 0.01 0.23± 0.11 0.11± 0.03 0.04± 0.02 0.12± 0.03 0.09± 0.03
MO 0.20± 0.01 0.39± 0.07 0.53± 0.06 0.45± 0.04 0.46± 0.01 0.22± 0.08 0.31± 0.08 0.30± 0.01
DiCE(r) 0.05± 0.01 1.76± 0.10 0.29± 0.05 0.22± 0.09 0.44± 0.04 0.07± 0.01 1.39± 0.21 0.28± 0.05
DiCE(g) 0.18± 0.01 0.09± 0.02 0.56± 0.04 0.45± 0.03 0.92± 0.09 0.23± 0.04 0.60± 0.14 0.31± 0.02
Ours 0.11± 0.10 0.19± 0.06 0.44± 0.11 0.41± 0.15 0.32± 0.11 0.23± 0.09 0.15± 0.11 0.17± 0.02

and range constraints (e.g., strictly increasing age) where
needed.

We summarise the performance of all methods on a maxi-
mum of 1000 samples, for which we randomly generate tar-
get labels that differ from the original classification labels,
on the following evaluation metrics:

• validity—the percentage of counterfactual instances clas-
sified as the intended target.

• sparsity—the L0 and L1 distance for categorical and
standardized numerical features, respectively.

• in-distributionness—the target-conditional maximum
mean discrepancy (MMD) (Gretton et al. 2012) which
we compute by taking the MMD between the counter-
factuals of a given target class and the training instances
with the same target prediction.

5.1 Validity
We compute the validity as the percentage of counterfactual
instances classified by the black-box model as the intended
target in Table 1. Our method generates counterfactuals with
high validity across multiple datasets and classifiers, com-
petitive with DiCE (random) and MO, and significantly out-
performing DiCE (genetic) and LORE. Note that MO can
always find a counterfactual as long as there is at least one
instance in the training set which complies with the coun-
terfactual constraints and predicted target class since it does
a nearest neighbour search on the training set. However, if
there is no instance in the training set which satisfies the
constraints it becomes impossible to generate a valid coun-
terfactual. We attribute the low validity score of LORE to
improper local decision boundary approximation. A change
in the prediction of the surrogate model does not guaran-
tee the same desired change towards the target class for the
original classification model. Likewise, DiCE (genetic) does
not ensure the generation of a valid counterfactual. The evo-
lutionary strategy objective is a weighted sum between the
divergence and proximity losses, which can favor sparsity
over the classification change.

5.2 Sparsity
We report two sparsity measures between the original in-
put and a valid counterfactual: L0 distance over categori-
cal and L1 distance over standardized numerical features.
Fair evaluation between methods that achieve different lev-
els of validity is however not trivial. For example, reporting

the sparsity over all valid counterfactuals per algorithm can
favor methods that achieve a lower validity score. Finding
a valid counterfactual instance may require larger displace-
ments from the original input to reach the intended target,
which will decrease the sparsity for the methods which man-
aged to succeed and will not affect the ones that failed. On
the other hand, performing a pairwise comparison over the
intersection of valid counterfactuals can have a similar ef-
fect, favoring a low validity method that follows a policy
focused on changing a single feature value. In Table 2, we
report the L0 and L1 metrics across the valid counterfactu-
als to confirm the sparsity of our results. Most comparable
to our proposal are the MO and DiCE (random) approaches
which achieve similar validity over four datasets (Adult,
Breast Cancer, Portuguese Bank, Spambase). Compared to
MO, our method generates significantly sparser counterfac-
tuals across all datasets for both numerical and categorical
features. DiCE returns sparser counterfactuals on categori-
cal features but does significantly worse on the numerical
ones compared to our method which manages to balance the
L0 and L1 losses successfully.

5.3 In-distributionness
To evaluate the realism of the generated counterfactuals we
compute the target-conditional MMD and compare it across
the different methods in Tables 3 and 4. The MMD is condi-
tioned on the target prediction because we want the counter-
factual to resemble feasible, in-distribution instances from
the target class. See Appendix A.9 for MMD computational
details.

Adult Breast Cancer

class 0
class 1

Figure 2: UMAP (McInnes, Healy, and Melville 2018) em-
beddings of the Adult and Breast Cancer training sets, la-
beled by a logistic regression model.

It is not straightforward to fairly compare different meth-
ods given the difference in counterfactual validity. If we only
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Table 3: In-distributionness—negative class (0) conditional MMD (mean±std over 5 classifiers and 3 random seeds).

MMD2
0 (10−1)

Method Adult Breast cancer Covertype Portuguese Bank Spambase

LORE 0.31± 0.06 1.09± 0.16 0.08± 0.03 0.08± 0.03 0.26± 0.02
MO 0.45± 0.04 0.50± 0.14 0.07± 0.06 0.16± 0.10 0.61± 0.11
DiCE (random) 0.56± 0.44 1.03± 0.10 0.17± 0.06 1.75± 0.71 0.80± 0.19
DiCE (genetic) 0.28± 0.03 0.85± 0.09 0.24± 0.10 0.68± 0.17 0.25± 0.01
Ours 0.36± 0.06 0.36± 0.34 0.04± 0.02 0.10± 0.07 0.32± 0.13

Table 4: In-distributionness—positive class (1) conditional MMD (mean±std over 5 classifiers and 3 random seeds).

MMD2
1 (10−1)

Method Adult Breast cancer Covertype Portuguese Bank Spambase

LORE 0.29± 0.02 0.80± 0.35 0.07± 0.08 0.19± 0.04 0.24± 0.05
MO 0.13± 0.01 1.53± 0.62 0.10± 0.06 0.16± 0.09 0.76± 0.19
DiCE (random) 1.48± 0.27 0.46± 0.10 0.15± 0.07 1.50± 0.38 0.75± 0.17
DiCE (genetic) 0.34± 0.04 0.37± 0.20 0.07± 0.07 0.15± 0.10 0.22± 0.07
Ours 0.43± 0.13 0.97± 0.50 0.12± 0.05 0.31± 0.21 0.33± 0.18

Figure 3: Diverse counterfactual instances via feature con-
ditioning. IN—original instance, CF(i)—counterfactual in-
stance. Grayed out feature values correspond to immutable
features.

consider the valid counterfactual instances, the comparison
would be biased and is likely to favor methods with low
validity which generate few but sparse, easy to flip coun-
terfactuals. Even if we consider both the valid and invalid
instances, the comparison depends on how overlapping the
class-conditional distributions are. If they are clearly sep-
arated, the MMD provides a fair metric for direct compari-
son, but if the distributions overlap then the invalid instances
might end up lowering the MMD which is undesirable. This
is illustrated in Figure 2, which visualizes UMAP (McInnes,
Healy, and Melville 2018) embeddings of the Adult and
Breast Cancer datasets, labeled by a logistic regression clas-
sifier. There is considerable overlap between the distribu-
tions of the two classes in Adult, leading to lower (better)
MMD scores for methods with low validity such as LORE
compared to our method. The classes in the Breast Can-
cer dataset are, however, more clearly separated, resulting
in higher (worse) MMD values for LORE due to the invalid
counterfactuals. As a result, the conditional MMD as a mea-
sure of in-distributionness should not be judged in isolation,

but jointly with the validity and sparsity metrics.

DiCE (random) achieves similar validity to our method
but reaches a higher (worse) MMD score on three datasets
(Adult, Portuguese Bank, Spambase) and performs simi-
larly on the other two. MO actually performs worse on two
(Breast Cancer, Spambase) and similarly on the other three
datasets compared to ours. This is a strong result for our
method since the counterfactuals obtained by MO are actual
instances of the target class from the training set.

5.4 Diversity and flexibility to other data
modalities

Our method can be extended to generate diverse counterfac-
tuals. The deterministic decoding phase ensures consistency
over repeated queries but limits the output to a single possi-
ble counterfactual per instance. To increase the diversity, we
can sample the conditional vector subject to the user-defined
feature constraints. For unconstrained features, we follow
the same sampling procedure applied during training, while
for constrained ones, we sample a subset of their restricted
values. The quantitative results for this setting show that
such conditional generation produces in-distribution coun-
terfactuals at the expense of a slight drop in validity perfor-
mance (see Appendix A.7). Qualitative results are depicted
in Figure 3.

To demonstrate the flexibility of our approach, we ran
experiments on two image datasets, MNIST—a collection
of handwritten digits (LeCun 1998), and CelebA—a collec-
tion of face images (Liu et al. 2015) divided into four non-
overlapping classes characterized by smiling/non-smiling
and young/old classification labels. Our training pipeline re-
mains unchanged and only requires a pre-trained autoen-
coder for each dataset (see Figure 4).
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Figure 4: MNIST (top half) and CelebA (bottom half)
counterfactual instances. On the odd rows, the original/re-
constructed image for MNIST/CelebA, and on the even
rows, the counterfactual instance. We use autoencoder re-
constructed images for CelebA to compare with the gener-
ated counterfactuals as the method is limited by the quality
of the autoencoder. Higher quality reconstructions by the au-
toencoder would lead to higher quality counterfactuals. La-
bels under images are classifier predictions.

6 Conclusion

Counterfactual instances are a powerful method for ex-
plaining the predictions of automated, black-box decision-
making systems. They can be particularly useful for action-
able recourse by providing direct feedback of what changes
to the individual features could be made in order to achieve a
specified outcome. Furthermore, being able to condition the
explanations on a desired target as well as feasible feature
ranges ensures that only relevant explanations are generated.

In this paper, we propose a model-agnostic, conditional
counterfactual generation method. We focused primarily on
the tabular data setting, and showed that our approach can
generate batches of sparse, in-distribution counterfactual in-
stances across various datasets, allowing for target and fea-
ture conditioning. Our method is stable during training and
does not require extensive hyperparameter tuning. Addition-
ally, we demonstrated that our method is flexible and extend-
able with minimal effort to other data modalities.

Appendices

A Tabular setup

This section contains all the experimental details related to
the tabular setup.

A.1 Datasets
We focus primarily on the tabular setting for which we se-
lected five datasets:

• Adult Census (Dua and Graff 2017)—32,561 instances
with 4 numerical and 8 categorical features (we use the
pre-processed version from (Klaise et al. 2021)) along
with a binary classification label. In all experiments, we
allow Age to change only in the positive direction, and
consider the following features as immutable: Marital
Status, Relationship, Race, Sex.

• Breast Cancer (Zwitter and Soklic 1988)—699 instances
with 9 categorical/ordinal features along with a binary
classification label.

• Covertype (Blackard 1998)—581,012 instances with 10
numerical and 2 categorical features along with a multi-
classification label (7 classes). For our experiments, we
only consider 10% of the available data. Due to high-
class imbalance, we apply data balancing during train-
ing by adjusting the weights inversely proportional to the
class frequencies.

• Portuguese Bank (Moro, Cortez, and Rita 2014)—40,841
instances with 7 numerical and 8 categorical features
along with a binary classification label. In all experi-
ments, we allow age to change only in the positive direc-
tion. We apply the same data balancing as with Cover-
type.

• Spambase (Dua and Graff 2017)—4,601 instances with
57 numerical features along with a binary classification
label.

A.2 Classifiers
We evaluate our method on five classifiers. Logistic Regres-
sion (LR), Decision Tree (DT), Random Forest (RF), Linear
Support Vector Classifier (LSVC) are part of the Scikit-learn
machine learning library, and XGBoost Classifier is part of
the XGBoost library. Table 5 presents the cross-validation
hyperparameters. Missing values correspond to the default
ones. We preprocessed each dataset by standardizing the nu-
merical variables and one-hot encoding the categorical ones.

In Table 6 we report the performance (i.e. measured by
the accuracy) of each classifier on every dataset for the train
and test split, respectively.

A.3 Autoencoders
All tabular autoencoders are fully connected networks with
a multi-headed decoder to properly address heterogeneous
datatypes. We modeled numerical features using normal dis-
tributions with constant variance and categorical ones using
categorical distributions. Table 7 summarizes the network
architectures of the autoencoder models for each dataset.
We trained all models for 100K steps using Adam opti-
mizer (Kingma and Ba 2014) with a batch size of 128 and a
learning rate of 1e-3. We defined the reconstruction loss as
a weighted combination between Squared Error (SE) aver-
aged across all numerical features and Cross-Entropy (CE)
averaged across the categorical ones. In all our experiments,
we consider a weight equal to 1 for both loss terms.

8



Table 5: Tabular classifiers’ hyperparameters settings.

Datasets

Model Adult Breast cancer Covertype Portuguese
Bank

Spambase

LR C: 10 C: 0.1 C: 100 C: 10 C: 0.1

DT max depth: 10,
min samples split:
5

max depth: 3,
min samples split:
4

max depth: 25,
min samples split:
3

max depth: 25 max depth: 10,
min samples split:
3

RF max depth: 15,
min samples split:
10,
n estimators:
50

max depth: 4,
min samples split:
4, n estimators:
50

max depth: 25,
n estimators:
50

max depth: 25,
min samples split:
3, n estimators:
50

max depth: 20,
min samples split:
4, n estimators:
50

LSCV C: 1 C=0.01 C: 10 C: 100 C=0.01

XGBC min child weight:
0.5, max depth:
3, gamma: 0.2

min child weight:
0.1, max depth:
3, gamma: 0

min child weight:
0.1, max depth:
20, gamma: 0

min child weight:
5.0, max depth:
4, gamma: 0.01

min child weight:
1.0, max depth:
20, gamma: 0.1

Table 6: Train/test classification accuracy per model and dataset.

Accuracy train/test(%)

Model Adult Breast cancer Covertype Portuguese Bank Spambase

LR 85 / 85 97 / 96 94 / 93 85 / 85 61 / 60
DT 87 / 85 95 / 95 97 / 91 98 / 86 98 / 82
RF 88 / 86 97 / 96 99 / 95 100 / 91 100 / 88
LSCV 85 / 85 98 / 96 94 / 93 87 / 87 68 / 68
XGBC 88 / 87 100 / 96 100 / 95 90 / 90 100 / 91

Table 7: Tabular autoencoders’ architectures.

Datasets

Adult Breast cancer Covertype Portuguese Bank Spambase

Input Layer Input Layer Input Layer Input Layer Input Layer
Linear(128) Linear(70) Linear(128) Linear(128) Linear(128)
ReLU() Tanh() ReLU() ReLU() ReLU()
Linear(15) Output Layer Liner(15) Linear(15) Linear(50)
Tanh() - Tanh() Tanh() Tanh()
Linear(128) - Linear(128) Linear(128) Linear(128)
ReLU() - ReLU() ReLU() ReLU()
Output Layer - Output Layer Output Layer Output Layer
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A.4 DDPG
The actor and the critic networks follow the same archi-
tecture for all data modalities, as displayed in Table 8. We
trained the models for 100K steps using a batch size of 128
and Adam optimizer (Kingma and Ba 2014) with the same
learning rate of 1e-3 for both actor and critic. We enforced
exploration by uniformly sampling the embedding represen-
tation in the interval [-1, 1] for 100 training steps. After-
wards, we applied Gaussian additive noise with a constant
standard deviation of 0.1 for the rest of the training. The
replay buffer has a capacity of 1000 batches, equivalent to
128000 experiences. The learning process starts after ten it-
erations, corresponding to a replay buffer containing 1280
experiences.

A.5 Algorithms’ variants
We analyze the performance of our method by including
four of its variants. First, we perform an ablation study on
the impact of the autoencoder by removing it from the gen-
eration pipeline since the tabular dataset is already low-
dimensional (denoted w/o AE). To map the input features
to the interval [−1, 1], we replace the encoding step with
a projection through a tanh nonlinearity and the decoding
phase with its corresponding inverse transformation. The
rest of the training procedure remains identical. Then, we
investigate the ability to generate diverse counterfactuals by
conditioning the generation process on a randomly sampled
conditional vector c. For the two pipeline settings (with and
without the AE), we used the same hyperparameters across
all the datasets and classifiers. The configuration with the
autoencoder, uses a sparsity coefficient λs = 0.5 and a con-
sistency coefficient λc = 0.5. The configuration without the
autoencoder only uses a sparsity coefficient λs = 0.1 since
the consistency loss is not defined.

We compare our methods with three model-agnostic,
gradient-free, tabular-oriented baselines, including their
variants: LORE (Guidotti et al. 2018), Minimum Observable
(MO) (Wexler et al. 2019), and DiCE (Mothilal, Sharma,
and Tan 2020). We analyzed two variants of DiCE: the ran-
dom approach, which incrementally increases the number of
features to sample from, and the genetic approach, which
follows a standard evolutionary procedure. In addition to the
two standard DiCE procedures which use soft target labels
(e.g., [0.7, 0.3]), we experimented with a hard/binary repre-
sentation (e.g., [1, 0]) of the output probability distribution
(denoted binary).

A.6 Benchmarking setup
We summarise the performance of all methods on a maxi-
mum of 1000 samples, for which we randomly generate tar-
get labels that differ from the original classification labels.
To ensure the termination of the counterfactual generation
process per instance, we restrict the running time to a win-
dow of 10 seconds chosen to exceed the average generation
time across all baselines. In contrast, our method generates
all counterfactuals within a few seconds. We keep the default
hyper-parameters for all baselines, except for LORE, where
we reduce the population size by a factor of 10 to fit the time

constraints without significantly affecting the overall perfor-
mance. We extend some baselines to allow immutable fea-
tures (e.g., race, gender) and range constraints (e.g., strictly
increasing age) where needed.

A.7 Validity results
We compute the validity as the percentage of counterfactual
instances classified by the black-box model as the intended
target. Table 9 summarises the results over all algorithms’
variants. For an analysis of the result, see Sections 5.1 and
5.4 from the main paper.

A.8 Sparsity results
We report two sparsity measures between the original input
and a valid counterfactual: L0 distance over categorical and
L1 distance over standardized numerical features. Tables 10
and 11 summarise the results over all algorithms’ variants
for the L0 and L1 distances, respectively. For a analysis of
the results, see Section 5.2 from the main paper.

A.9 In-distributionness
We evaluate the realism of the generated counterfactual
through the target-conditional MMD. We condition the
MMD on the target prediction since we want to measure
the in-distributionness of the generated instances against the
reference training instances belonging to the target class.
We perform a dimensionality reduction step for the MMD
computation with a randomly initialized encoder (Rabanser,
Günnemann, and Lipton 2019) following an architecture
that consists of three linear layers of dimension 32, 16, and 5
with ReLU non-linearities in-between. We use a radial basis
function kernel for which we derive the standard deviation
from the input data (Van Looveren et al. 2019). Tables 12
and 13 summarise the results over all algorithms’ variants.
For a analysis of the result, see Section 5.3 from the main
paper.

Table 14 summarizes the results obtained for the Cover-
type dataset for all classes, previously presented in Tables
12 and 13 only for the first two most dominant classes along
with the rest of binary classification datasets. The scores are
averaged across three seeds and all classifiers.

A.10 Results accross different hyperparameters
averaged over all datasets, classifiers and
seeds.

For both pipeline configurations, we perform a hyperparam-
eter search over the sparsity (λs) and consistency (λc) coef-
ficients. We evaluate the percentage of the valid counterfac-
tuals and the sparsity through the L0 and L1 norm for 1000
instances, where the test set permits. We report the results for
the original unbalanced class distribution (denoted as unbal-
anced) and the results obtained after balancing the test set
(denoted as balanced). The balancing procedure consists of
sampling uniformly without replacement the same number
of instances from the class conditional subset for each class.
Tables 15 and 16 summarizes the results averaged across
all seeds, classifiers, and datasets for the normal and diverse
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Table 8: DDPG actor-critic architectures.

Actor Critic

Linear(input size, hidden dim) Linear(input size + latent dim, hidden dim)
LayerNorm(hidden dim) LayerNorm(hidden dim)
ReLU() ReLU()
Linear(hidden dim, hidden dim) Linear(hidden dim, hidden dim)
LayerNorm(hidden dim) LayerNorm(hidden dim)
ReLU() ReLU()
Linear(hidden dim, latent dim) Linear(hidden dim, 1)

Table 9: Counterfactual validity—percentage of generated counterfactuals of the desired target label (mean±std over 5 classi-
fiers and 3 random seeds).

Validity (%)

Method Adult Breast cancer Covertype Portuguese Bank Spambase

LORE 18.08± 5.27 25.95± 34.33 15.19± 7.75 19.07± 9.75 9.53± 5.91
MO 91.00± 1.12 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
DiCE (random) 99.93± 0.16 100.00± 0.00 92.67± 11.04 99.98± 0.04 99.58± 0.60
DiCE (genetic) 33.94± 11.89 60.86± 14.18 72.09± 18.40 90.97± 8.73 40.93± 2.28
DiCE (binary, random) 100.00± 0.00 100.00± 0.00 92.66± 11.03 99.99± 0.03 99.87± 0.25
DiCE (binary, genetic) 51.28± 5.00 74.57± 6.92 77.55± 14.49 98.50± 1.78 40.72± 2.07
Ours (w/o AE) 98.59± 0.97 91.24± 9.96 91.11± 6.58 99.38± 1.24 99.72± 0.41
Ours (w/o AE, diverse) 97.17± 0.87 91.19± 3.73 80.07± 7.54 98.23± 1.20 99.07± 0.99
Ours 98.59± 0.97 99.24± 0.76 86.81± 13.68 98.27± 1.53 99.18± 0.97
Ours (diverse) 97.50± 0.58 96.90± 1.76 76.55± 16.65 96.10± 2.78 98.67± 1.24

Table 10: Counterfactual sparsity—L0 distance over categorical features (mean±std over 5 classifiers and 3 random seeds).

L0 distance

Method Adult Breast cancer Covertype Portuguese Bank Spambase

LORE 0.09± 0.01 0.11± 0.01 0.23± 0.11 0.04± 0.02 -
MO 0.20± 0.01 0.53± 0.06 0.45± 0.04 0.22± 0.08 -
DiCE (random) 0.05± 0.01 0.29± 0.05 0.22± 0.09 0.07± 0.010 -
DiCE (genetic) 0.18± 0.01 0.56± 0.04 0.45± 0.03 0.23± 0.04 -
DiCE (binary, random) 0.05± 0.01 0.29± 0.05 0.22± 0.09 0.07± 0.01 -
DiCE (binary, genetic) 0.19± 0.01 0.56± 0.03 0.46± 0.04 0.24± 0.05 -
Ours (w/o AE) 0.13± 0.10 0.48± 0.09 0.47± 0.13 0.31± 0.07 -
Ours (w/o AE, diverse) 0.11± 0.09 0.45± 0.10 0.34± 0.11 0.25± 0.08 -
Ours 0.11± 0.10 0.44± 0.11 0.41± 0.15 0.23± 0.09 -
Ours (diverse) 0.10± 0.09 0.43± 0.10 0.34± 0.14 0.17± 0.06 -

Table 11: Counterfactual sparsity—L1 distance over standardized numerical features (mean±std over 5 classifiers and 3 random
seeds).

L1 distance

Method Adult Breast cancer Covertype Portuguese Bank Spambase

LORE 0.11± 0.04 - 0.11± 0.03 0.12± 0.03 0.09± 0.03
MO 0.39± 0.07 - 0.46± 0.01 0.31± 0.08 0.30± 0.01
DiCE (random) 1.76± 0.10 - 0.44± 0.04 1.39± 0.21 0.28± 0.05
DiCE (genetic) 0.09± 0.02 - 0.92± 0.09 0.60± 0.14 0.31± 0.02
DiCE (binary, random) 1.76± 0.10 - 0.44± 0.04 1.39± 0.21 0.28± 0.05
DiCE (binary, genetic) 0.08± 0.02 - 0.96± 0.06 0.59± 0.13 0.31± 0.02
Ours (w/o AE) 0.23± 0.07 - 0.57± 0.14 0.18± 0.09 0.26± 0.09
Ours (w/o AE, diverse) 0.24± 0.05 - 0.56± 0.10 0.32± 0.17 0.23± 0.08
Ours 0.19± 0.06 - 0.32± 0.11 0.15± 0.11 0.17± 0.02
Ours (diverse) 0.21± 0.05 - 0.32± 0.07 0.24± 0.13 0.15± 0.02
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Table 12: In-distributionness—negative class (0) conditional MMD (mean±std over 5 classifiers and 3 random seeds).

MMD2
0(10

−1)

Method Adult Breast cancer Covertype Portuguese Bank Spambase

LORE 0.31± 0.06 1.09± 0.16 0.08± 0.03 0.08± 0.03 0.26± 0.02
MO 0.45± 0.04 0.50± 0.14 0.07± 0.06 0.16± 0.10 0.61± 0.11
DiCE (random) 0.56± 0.44 1.03± 0.10 0.17± 0.06 1.75± 0.71 0.80± 0.19
DiCE (genetic) 0.28± 0.03 0.85± 0.09 0.24± 0.10 0.68± 0.17 0.25± 0.01
DiCE (binary, random) 0.56± 0.44 1.03± 0.10 0.17± 0.06 1.75± 0.71 0.80± 0.19
DiCE (binary, genetic) 0.25± 0.02 0.78± 0.12 0.27± 0.10 0.67± 0.16 0.25± 0.02
Ours (w/o AE) 0.56± 0.31 1.01± 0.41 0.33± 0.40 0.07± 0.05 0.39± 0.53
Ours (w/o AE, diverse) 0.45± 0.22 1.02± 0.18 0.25± 0.20 0.05± 0.03 0.27± 0.40
Ours 0.36± 0.06 0.36± 0.34 0.04± 0.02 0.10± 0.07 0.32± 0.13
Ours (diverse) 0.30± 0.06 0.65± 0.15 0.02± 0.01 0.07± 0.04 0.28± 0.11

Table 13: In-distributionness—positive class (1) conditional MMD (mean±std over 5 classifiers and 3 random seeds).

MMD2
1(10

−1)

Method Adult Breast cancer Covertype Portuguese Bank Spambase

LORE 0.29± 0.02 0.80± 0.35 0.07± 0.08 0.19± 0.04 0.24± 0.05
MO 0.13± 0.01 1.53± 0.62 0.10± 0.06 0.16± 0.09 0.76± 0.19
DiCE (random) 1.48± 0.27 0.46± 0.10 0.15± 0.07 1.50± 0.38 0.75± 0.17
DiCE (genetic) 0.34± 0.04 0.37± 0.20 0.07± 0.07 0.15± 0.10 0.22± 0.07
DiCE (binary, random) 1.48± 0.28 0.46± 0.10 0.15± 0.07 1.50± 0.38 0.75± 0.18
DiCE (binary, genetic) 0.33± 0.04 0.48± 0.22 0.07± 0.07 0.15± 0.11 0.22± 0.07
Ours (w/o AE) 0.34± 0.06 1.09± 0.42 0.33± 0.18 0.20± 0.15 0.67± 0.50
Ours (w/o AE, diverse) 0.32± 0.06 0.50± 0.30 0.15± 0.10 0.14± 0.06 0.35± 0.22
Ours 0.43± 0.13 0.97± 0.50 0.12± 0.05 0.31± 0.21 0.33± 0.18
Ours (diverse) 0.30± 0.06 0.28± 0.15 0.09± 0.03 0.21± 0.16 0.23± 0.16

Table 14: Covertype MMD for unbalanced datasets with untrained encoder dimensionality reduction.

Target conditional MMD (10−1)

Method 0 1 2 3 4 5 6

LORE 0.08± 0.03 0.07± 0.08 0.52± 0.07 1.25± 0.14 0.23± 0.11 1.20± 0.17 0.25± 0.04
MO 0.07± 0.06 0.10± 0.06 0.47± 0.09 0.05± 0.10 0.05± 0.04 0.85± 0.09 0.15± 0.05
DICE(random) 0.17± 0.06 0.15± 0.07 0.94± 0.72 0.65± 0.51 0.63± 0.47 0.87± 0.18 0.36± 0.13
DICE(genetic) 0.24± 0.10 0.07± 0.07 0.41± 0.28 0.59± 0.28 0.38± 0.17 0.71± 0.34 0.44± 0.20
DiCE(binary, random) 0.17± 0.06 0.15± 0.07 0.94± 0.72 0.65± 0.51 0.63± 0.47 0.87± 0.18 0.36± 0.13
DiCE(binary, genetic) 0.27± 0.10 0.07± 0.07 0.47± 0.26 0.54± 0.27 0.36± 0.18 0.72± 0.33 0.46± 0.20
Ours(w/o AE) 0.33± 0.40 0.33± 0.18 0.65± 0.25 1.04± 0.51 0.82± 0.58 0.78± 0.31 0.57± 0.41
Ours(w/o AE, diverse) 0.25± 0.20 0.15± 0.10 0.49± 0.26 0.75± 0.52 0.37± 0.18 0.52± 0.34 0.23± 0.13
Ours 0.04± 0.02 0.12± 0.05 0.48± 0.21 0.55± 0.46 0.33± 0.26 0.78± 0.48 0.16± 0.14
Ours(diverse) 0.02± 0.01 0.09± 0.03 0.22± 0.08 0.66± 0.47 0.33± 0.22 0.60± 0.30 0.14± 0.08
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version of the algorithm, respectively. Sparser results corre-
spond to lower validity scores. Note that a finer per dataset,
per classifier hyperparameter selection procedure may yield
better results.

B Image setup
This section contains all the experimental details related to
the image setup.

B.1 Datasets
To demonstrate the flexibility of our approach, we ran ex-
periments on two image datasets, MNIST—a collection of
handwritten digits (LeCun 1998), and CelebA—a collec-
tion of face images (Liu et al. 2015) divided into four non-
overlapping classes characterized by smiling/non-smiling
and young/old classification labels.

B.2 Classifier
The classification model (CNN) is the same as in (Van Loov-
eren and Klaise 2019; Van Looveren et al. 2021), achieving
accuracy on the test set of 99% and 81% for MNIST and
CelebA, respectively.

B.3 Autoencoders
The MNIST encoder projects the input instances to a latent
representation of dimension 32. We trained the autoencoder
for 50K steps with a batch size of 64, optimizing the Binary
Cross-Entropy (BCE) using Adam optimizer (Kingma and
Ba 2014) with a learning rate of 1e-3. The CelebA encoder
projects the input space from 128x128 to a latent representa-
tion of dimension 128. We trained the autoencoder for 350K
steps with a batch size of 128, optimizing the Mean Squared
Error(MSE) using Adam optimizer (Kingma and Ba 2014)
with a learning rate of 1e-4. Tables 17 and 18 summarize the
autoencoders’ architecture for both datasets.

B.4 DDPG
We trained the MNIST and CelebA counterfactual genera-
tor for 300K and 100K iterations, with a sparsity coefficient
λs = 7.5 for MNIST, and λs = 20.0 for CelebA, and a con-
sistency coefficient λc = 0 for both datasets. The rest of the
settings described in A.4 remain unchanged.
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Table 15: Comparison validity and sparsity.

Unbalanced Balanced

Method Validity(%) L0 L1 Validity(%) L0 L1

λs = 0.1, w/o AE 96.01± 6.69 0.35± 0.17 0.31± 0.18 96.09± 5.97 0.34± 0.17 0.31± 0.17
λs = 0.2, w/o AE 93.89± 8.44 0.28± 0.14 0.25± 0.14 93.89± 7.76 0.28± 0.14 0.25± 0.13
λs = 0.3, w/o AE 90.94± 12.24 0.25± 0.12 0.23± 0.13 90.47± 11.50 0.24± 0.13 0.23± 0.11
λs = 0.4, w/o AE 88.07± 14.75 0.24± 0.12 0.22± 0.12 86.92± 14.84 0.23± 0.12 0.22± 0.11
λs = 0.5, w/o AE 84.63± 18.67 0.22± 0.11 0.20± 0.11 82.02± 19.58 0.21± 0.11 0.20± 0.09

λs = 0.1, λc = 0.0 99.54± 1.15 0.51± 0.22 0.37± 0.20 99.35± 1.15 0.51± 0.21 0.37± 0.20
λs = 0.1, λc = 0.5 99.03± 2.98 0.46± 0.27 0.38± 0.21 98.78± 3.17 0.48± 0.28 0.37± 0.20

λs = 0.2, λc = 0.5 99.02± 2.60 0.39± 0.23 0.29± 0.16 98.65± 3.01 0.40± 0.24 0.28± 0.16

λs = 0.3, λc = 0.5 97.81± 6.74 0.34± 0.20 0.26± 0.14 97.42± 6.66 0.35± 0.22 0.24± 0.13
λs = 0.3, λc = 1.0 97.80± 6.45 0.37± 0.23 0.25± 0.13 97.49± 6.39 0.38± 0.24 0.24± 0.12

λs = 0.4, λc = 0.5 97.23± 6.38 0.32± 0.19 0.23± 0.11 95.99± 7.85 0.33± 0.20 0.21± 0.10
λs = 0.4, λc = 1.0 97.20± 7.33 0.33± 0.21 0.22± 0.11 95.95± 8.43 0.34± 0.23 0.21± 0.10

λs = 0.5, λc = 0.0 96.51± 9.73 0.39± 0.16 0.25± 0.13 95.21± 10.40 0.39± 0.18 0.24± 0.12
λs = 0.5, λc = 0.1 96.13± 9.55 0.30± 0.16 0.23± 0.11 94.65± 10.23 0.31± 0.17 0.22± 0.10
λs = 0.5, λc = 0.2 96.52± 7.89 0.29± 0.16 0.22± 0.11 94.74± 9.97 0.30± 0.17 0.20± 0.10
λs = 0.5, λc = 0.5 96.42± 7.85 0.30± 0.18 0.21± 0.11 94.75± 10.07 0.31± 0.19 0.19± 0.09
λs = 0.5, λc = 1.0 96.57± 7.97 0.31± 0.20 0.21± 0.10 94.89± 10.18 0.32± 0.21 0.20± 0.09
λs = 0.5, λc = 1.5 95.81± 9.94 0.32± 0.21 0.22± 0.11 93.90± 12.01 0.33± 0.23 0.20± 0.09
λs = 0.5, λc = 5.0 85.30± 23.86 0.40± 0.27 0.22± 0.11 86.31± 19.06 0.40± 0.28 0.20± 0.10

Table 16: Comparison validity and sparsity for diversity sampling.

Unbalanced Balanced

Method Validity(%) L0 L1 Validity(%) L0 L1

λs = 0.1, w/o AE, diverse 96.01± 6.69 0.35± 0.17 0.31± 0.18 96.09± 5.97 0.34± 0.17 0.31± 0.17
λs = 0.2, w/o AE, diverse 93.89± 8.44 0.28± 0.14 0.25± 0.14 93.89± 7.76 0.28± 0.14 0.25± 0.13
λs = 0.3, w/o AE, diverse 90.94± 12.24 0.25± 0.12 0.23± 0.13 90.47± 11.50 0.24± 0.13 0.23± 0.11
λs = 0.4, w/o AE, diverse 88.07± 14.75 0.24± 0.12 0.22± 0.12 86.92± 14.84 0.23± 0.12 0.22± 0.11
λs = 0.5, w/o AE, diverse 84.63± 18.67 0.22± 0.11 0.20± 0.11 82.02± 19.58 0.21± 0.11 0.20± 0.09

λs = 0.1, λc = 0.0, diverse 96.81± 5.36 0.44± 0.19 0.41± 0.19 96.25± 5.72 0.44± 0.20 0.40± 0.18
λs = 0.1, λc = 0.5, diverse 96.64± 6.42 0.40± 0.23 0.40± 0.18 96.21± 6.75 0.41± 0.24 0.38± 0.17

λs = 0.2, λc = 0.5, diverse 96.12± 6.92 0.34± 0.20 0.31± 0.14 95.57± 7.35 0.34± 0.21 0.29± 0.13

λs = 0.3, λc = 0.5, diverse 95.30± 9.06 0.30± 0.18 0.27± 0.12 94.76± 9.08 0.31± 0.20 0.26± 0.11
λs = 0.3, λc = 1.0, diverse 95.42± 8.77 0.31± 0.20 0.27± 0.12 94.84± 8.66 0.33± 0.22 0.26± 0.11

λs = 0.4, λc = 0.5, diverse 94.22± 9.85 0.28± 0.17 0.25± 0.11 93.25± 10.71 0.29± 0.19 0.23± 0.09
λs = 0.4, λc = 1.0, diverse 94.17± 10.47 0.29± 0.19 0.25± 0.11 93.35± 11.01 0.29± 0.20 0.23± 0.09

λs = 0.5, λc = 0.0, diverse 93.56± 11.62 0.34± 0.15 0.28± 0.10 92.58± 12.04 0.34± 0.17 0.26± 0.10
λs = 0.5, λc = 0.1, diverse 93.29± 11.90 0.27± 0.15 0.25± 0.10 92.36± 12.40 0.28± 0.17 0.23± 0.09
λs = 0.5, λc = 0.2, diverse 93.81± 10.81 0.26± 0.15 0.24± 0.10 92.69± 12.19 0.27± 0.17 0.22± 0.09
λs = 0.5, λc = 0.5, diverse 93.14± 11.29 0.26± 0.16 0.23± 0.10 92.06± 12.66 0.27± 0.18 0.21± 0.09
λs = 0.5, λc = 1.0, diverse 93.40± 11.45 0.27± 0.17 0.23± 0.10 92.32± 12.57 0.28± 0.19 0.21± 0.08
λs = 0.5, λc = 1.5, diverse 92.85± 12.18 0.27± 0.18 0.23± 0.10 91.71± 13.51 0.28± 0.20 0.22± 0.08
λs = 0.5, λc = 5.0, diverse 81.39± 24.63 0.33± 0.24 0.24± 0.10 83.08± 20.38 0.34± 0.26 0.22± 0.09
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Table 17: Image autoencoders’ architectures.

Datasets
MNIST CelebA
Conv2d(1, 16, kernel size=(3, 3), padding=1) ConvBlock(3, 32)
ReLU() ConvBlock(32, 64)
MaxPool2d(kernel size=(2, 2), stride=2) ConvBlock(64, 128)
Conv2d(16, 8, kernel size=(3, 3), padding=1) ConvBlock(128, 256)
ReLU() ConvBlock(256, 512)
MaxPool2d(kernel size=(2, 2), stride=2) ConvBlock(512, 512)
Conv2d(8, 8, kernel size=(3, 3), padding=2) Flatten()
ReLU() Linear(2048, 128)
MaxPool2d(kernel size=(2, 2), stride=2) Tanh()
Flatten() Reshape(512, 2, 2)
Linear(128, 32) TransConvBlock(512, 512)
Tanh() TansConvBlock(512, 512)
Linear(32, 128) TransConvBlock(512, 256)
ReLU() TransConvBlock(256, 128)
Reshape(8, 4, 4) TransConvBlock(128, 64)
Conv2d(8, 8, kernel size=(3, 3), padding=1) TransConvBlock(64, 32)
ReLU() TransConvBlock(32, 32)
Upsample(scale factor=2) TransConvBlock(32, 3)
Conv2d(8, 8, kernel size=(3, 3), padding=1) Tanh()
ReLU() -
Upsample(scale factor=2) -
Conv2d(8, 16, kernel size=(3, 3)) -
ReLU() -
Upsample(scale factor=2) -
Conv2d(16, 1, kernel size=(3, 3), padding=1) -
Sigmoid() -

Table 18: Blocks’ architectures.

Blocks

ConvBlock TransConvBlock

Conv2d(in channels, out channels, kernel size=3,
stride=2, padding=1)

ConvTranspose2d(in channels, out channels,
kernel size=3, stride=2, padding=1, out-
put padding=1)

BatchNorm2d(out channles) BatchNorm2d(out channles)
LeakyReLU() LeakyReLU()
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C Tabular and image samples
Qualitative evaluation for tabular and image setup.

C.1 Samples Adult

Figure 5: Counterfactual instances on Adult dataset. Odd rows correspond to the input instances and even rows correspond to
the counterfactual instances. Grayed out features correspond to immutable features and Age feature is allowed to increase only.
Feature changes are highlighted in red.
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Figure 6: Conditional counterfactual instances on the Adult dataset. Odd rows correspond to the input instances and even rows
correspond to the counterfactual instances. Grayed out features correspond to immutable features. All instances are conditioned
on the same conditional vector corresponding to: 1) Age allowed to increase by up to 10; 2) Workclass allowed to change to
{Private, Without-pay} or stay the same; 3) Education allowed to change to {Bachelors, Masters, Dropout} or stay the same;
4) Occupation allowed to change to {Sales, White-Collar, Blue-Collar} or stay the same; 5) Capital Gain allowed to increase
or decrease by up to 10000; 6) Capital Loss allowed to increase or decrease by up to 10000; 7) Hours per week allowed to
increase or decrease by up to 20; 8) Country cannot change. Feature changes are highlighted in red.

17



C.2 Samples MNIST

Figure 7: One instance to all classes on MNIST dataset. Starting from left to right: original instance, reconstructed instance,
counterfactual instance for each class staring from 0 to 9.
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C.3 Samples CELEBA

Figure 8: One instance to all classes on CelebA dataset. Starting from left to right: original instance, reconstructed instance,
counterfactual instance for each class: young and smiling, young and not smiling, old and smiling, old and not smiling.
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Rabanser, S.; Günnemann, S.; and Lipton, Z. 2019. Fail-
ing Loudly: An Empirical Study of Methods for Detecting
Dataset Shift. In Wallach, H.; Larochelle, H.; Beygelzimer,
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