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Abstract

Explaining black-box Artificial Intelligence (AI) models is a
cornerstone for trustworthy AI and a prerequisite for its use
in safety critical applications such that AI models can reliably
assist humans in critical decisions. However, instead of trying
to explain our models post-hoc, we need models which are
interpretable-by-design built on a reasoning process similar
to humans that exploits meaningful high-level concepts such
as shapes, texture or object parts. Learning such concepts is
often hindered by its need for explicit specification and anno-
tation up front. Instead, prototype-based learning approaches
such as ProtoPNet claim to discover visually meaningful pro-
totypes in an unsupervised way. In this work, we propose a
set of properties that those prototypes have to fulfill to enable
human analysis, e.g. as part of a reliable model assessment
case, and analyse such existing methods in the light of these
properties. Given a ‘Guess who?’ game, we find that these
prototypes still have a long way ahead towards definite expla-
nations. We quantitatively validate our findings by conduct-
ing a user study indicating that many of the learnt prototypes
are not considered useful towards human understanding. We
discuss about the missing links in the existing methods and
present a potential real-world application motivating the need
to progress towards truly human-interpretable prototypes.

1 Introduction
In recent years, Deep Neural Networks (DNNs) have been
shown to be increasingly proficient in solving more and
more complex tasks. Increasing complexity of tasks lead
DNNs to churn billions of parameters, vast pools of unstruc-
tured data and non-human understandable internal represen-
tations to arrive at these spectacular results. However, this
only adds to the complexity and opacity of the already black-
box DNNs. This calls for an increasing need to promote eX-
plainable Artificial Intelligence (XAI) approaches, for im-
proving interpretability, transparency, and trustworthiness of
AI (Adadi and Berrada 2018; Barredo Arrieta et al. 2020).
It is even more critical to reason and explain the decision-
making process of DNNs, when such decisions are applied
in safety-critical use-cases like self-driving cars or medical
diagnosis (Tjoa and Guan 2020). These cases not only de-
mand higher accountability to figure out why and what, if
things go wrong but also a provision to assess, debug and
audit in cases of failure modes.

In general, XAI approaches try to map the internal
learnt representations of DNNs into human-interpretable
formats. However, what constitutes a sufficiently human-
understandable interpretation is still largely subjective of
the XAI approach itself, whether it is post-hoc or inher-
ently interpretable or seeks local or global explanations and
so on. One novel direction is associated with learning rep-
resentations which can be explicitly tied to higher level
concepts relevant to humans, e.g. predicting an image of
a bird red-billed hornbill could depend on the presence of
concepts like red bill. However, this requires explicit prior
knowledge of relevant concepts or attributes and relies on
correspondingly annotated datasets. Instead, unsupervised
discovery of the relevant parts or prototypes would enable
the use of existing large-scale datasets and open such ap-
proaches to more diverse use-cases. Such prototypes can
represent distinct human-understandable concepts or sub-
parts, e.g. beaks, wings, tails which could together predict a
bird. While learning such representations in an unsupervised
scenario (absence of concept-level annotation) in itself is a
challenge, the other difficulty lies in visualising such implic-
itly learnt representations understandable to human eye.

A very prominent line of work based on learning inter-
pretable prototypes has emerged where the focus is to learn
representative parts for the downstream task by finding the
closest sample to a given learnt representation as prototypes
(Li et al. 2018; Chen et al. 2019; Xu et al. 2020; Van Loov-
eren and Klaise 2021; Nauta et al. 2021; Nauta, van Bree,
and Seifert 2021). How useful are these interpretations with
respect to human assessment of the model’s inner workings
and potential insufficiencies?

In this work, we closely investigate the performance of
selected interpretable prototype-based approaches in terms
of qualitative interpretation using a network called Proto-
typical Parts Network (ProtoPNet) (Chen et al. 2019) and
subsequent variants (Nauta, van Bree, and Seifert 2021;
Gautam et al. 2021). They are designed to learn representa-
tions of certain parts of the training image class (prototypes)
and then find the (parts of) test samples similar to the proto-
types (“this-looks-like-that”) based on similarity scores. To
this end, our key contributions are:

1. We design common setup of experiments and accord-
ingly propose requisite properties (Desiderata, Section
3) towards learning interpretable prototypes beneficial
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for the human assessment of a model

2. We analyse existing methods with respect to these prop-
erties for both real-world and synthetic datasets (Section
5.1, 5.3)

3. We provide quantitative results based on a user study to
validate our findings on real images (Section 5.2)

4. Finally, we motivate the application of interpretable pro-
totypes using real-world out-of-distribution (OOD) de-
tection task (Section 5.4) and conclude with imminent
challenges and potential directions (Section 6)

2 Interpretability So Far
According to (Páez 2019), Interpretability means an AI sys-
tem’s decision can be explained globally or locally and the
system’s purpose as well as decision can be understood by
a human actor. There exists a vast pool of XAI literature
(Schwalbe and Finzel 2021; Holzinger et al. 2022), also per-
taining to visual tasks (Nguyen, Yosinski, and Clune 2019;
Samek and Müller 2019). Following are some major distin-
guishing factors towards choosing type of explanation de-
rived from a given XAI approach:

Local vs. Global: Several vision approaches using DNNs
focus on local explanations (Zhang and Zhu 2018; Ribeiro,
Singh, and Guestrin 2016) limited to specific few samples
or highlighting specific parts of the image that the DNNs
attended to for a given decision (i.e. regions with highest
attribution), say by generating heatmaps. These methods of-
ten involve generating saliency-based activation maps (Zhou
et al. 2016), local sensitivity based on gradients (Sundarara-
jan, Taly, and Yan 2017), or using perturbations (Fong and
Vedaldi 2017) or relevance back-propagation (Shrikumar,
Greenside, and Kundaje 2017) such as LRP (Layer-wise
Relevance Propagation) (Bach et al. 2015). However, all
these approaches are often local analysis. In contrast, global
explanations provide analysis on the models as a whole, in-
dependent of individual examples (Lundberg et al. 2020),
e.g. mapping certain concepts to internal latent representa-
tions. This provides a wider scope for general applicability.
For some tasks, like OOD detection, global explanations are
even necessary to detect new OOD samples.

Post-Hoc vs. Interpretable-by-Design: Most of the
above local explanation methods are also post-hoc interpre-
tations, which involve taking a pre-trained model and then
identifying relevant features via attribution or trying to un-
derstand the inner workings a posteriori. Since these expla-
nations are not tied to the inner workings of the model, they
can be unreliable. Thus, we need inherently interpretable
models, i.e. interpretable-by-design (IBD), such that DNNs
are designed in a way to make internal representations in-
terpretable. IBD methods have gained much momentum be-
cause if we want our models to be explainable, we need to
consciously design them to be interpretable (Rudin 2019).
One recent direction towards IBD models is to map human-
understandable concepts or prototypes into internal repre-
sentations, e.g. by embedding an interpretable layer into
the network like in concept bottleneck models (CBM) (Koh
et al. 2020), ProtoPNet models etc., or by enforcing single

concepts into a model by including their outputs in the loss
function of the model (Zhang, Wu, and Zhu 2018).

Explicitly Specified vs. Implicitly Derived: When we
want our learnt representations to be human-understandable,
we can tie them to either an explicitly specified ‘concept’
from natural human language or we can learn ‘prototypes’
which are implicitly derived. Prototypes are semantically
relevant visual explanations often represented by the clos-
est training image, parts of an image, or via decoding ap-
proaches (Li et al. 2018). In concept learning, one tries to as-
sociate known semantic concepts to latent spaces (Koh et al.
2020; Kazhdan et al.; Fong and Vedaldi 2018; Fang et al.
2020; Cao, Brbic, and Leskovec 2021). However, the avail-
ability of datasets with annotated concepts or even the prior
knowledge of the expected concepts are quite limited. In
such cases, prototype-based learning using an IBD method
provides an alternative to learn global explanations without
the need for concept-specific annotations.

3 Interpretable Prototypes: Desiderata
When we assume concepts as something explicitly specified,
we basically refer to particular examples that we can recol-
lect from memory (e.g. bird with red bill). In case of pro-
totypes, they are often average representation over several
observed examples (Stammer et al. 2022). While the task
is to learn independent underlying representations as proto-
type vectors, a precise visualisation of the prototype vectors
in a human-understandable format is still challenging. In lit-
erature, prototypes have been interchangeably referred to as
representations for a full image or semantically relevant sub-
parts of it. In this work, we consider the latter usage for fine-
grained interpretability and subsequently chalk out desired
properties towards learning interpretable prototypes that are
beneficial for human assessment of a model:
1. Human-understandable / interpretable: The visualisa-

tion of the prototype vectors should correspond to a dis-
tinct semantically human-relevant entity. Often, due to
dataset biases, vague interpretations creep in, like con-
tours of objects or background colours, which often lack
in definite explanation.

2. Semantically disentangled: Each prototype should repre-
sent distinctly different semantic units that can be asso-
ciated with common interpretation via humans.

3. Semantically transformation invariant: All prototypes
representing one semantic idea should be uniquely rep-
resented irrespective of their variability in scale, transla-
tion, or rotation angle across different samples.

4. Relevant to the learnt task: The prototypes learnt should
add relevant information towards the task learnt by the
given ML model. It can either be the whole semantic
entity or distinct sub-parts of it. E.g. for a classifica-
tion problem for cars, the prototypes should be parts
which are semantically relevant for identifying a car, like
wheels, doors etc., whereas a pedestrian is not related to
a car directly.

Along with all of the above properties for interpretable pro-
totypes, it is also important to focus on learning the pro-
totypes with minimum concept-level supervision. We learn
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prototypes under the assumption that concept-level supervi-
sion is difficult and expensive to get. In the rest of this work,
we focus our investigation on recent advances in prototype-
based learning methods presented in Section 4.

4 Learning and Visualising Prototypes
ProtoPNet (Chen et al. 2019) is an image classifier network
that learns representations for relevant sub-parts of an image
as prototypes.

(i) Learning prototypes: They are learnt by appending
a prototype layer or a latent space to the feature extractor.
The prototypes are class-specific (number of prototypes per
class is pre-defined) and learnt by employing a cluster and
separation loss on top of the cross-entropy loss, which en-
courages semantically similar samples to cluster together.
Since height and width of each prototype is smaller than
the feature layer, each prototype represents a patch corre-
sponding to the feature layer in latent space and in turn some
prototypical part of the whole image x. In this prototype
layer, squared L2 distances between the prototype pj and
all patches of z, having similar sizes as pj , are calculated
and inverted to obtain similarity scores S.

(ii) Visualising prototypes: The similarity scores to-
gether constitute m activation heatmaps gpj

of same spatial
size as z. They indicate where and how strongly a given pro-
totype is present in z and are reduced to a single similarity
score using global max pooling. Based on maximum similar-
ity scores after comparison with all inputs from a prototype-
specific class, each prototype is projected onto the nearest z.
Since the spatial arrangement is preserved in the heatmaps,
they can be easily upsampled and overlayed on the full im-
age. The patch corresponding to the maximum similarity
score from the heatmap projected upon the input image is
thus visualised as a prototype.

In this work, we also analyse two successive methods
proposing solutions for following shortcomings concerning
the aspects of learning and visualising prototypes:

(a) Optimising visualising prototypes by addressing the
problem of coarse and spatially imprecise upsampling: By
upsampling the low resolution heatmap for most relevant
regions of interest for both prototype training and test im-
age, ProtoPNet tries to bring forth the decision “this rele-
vant prototype from this training image looks like that fea-
ture of that test image”. However, the effective receptive
field in the original image is much larger. Due to model-
agnostic upsampling, the region of interest in the final input
image tends to imprecisely cover a lot more than the rele-
vant pixels. To address this problem, (Gautam et al. 2021)
proposed a method called Prototypical Relevance Propa-
gation (PRP) which builds upon the principles of LRP. It
aims to attain more accurate fine-grained model-aware ex-
planations by backpropagating the relevances of the proto-
types in ProtoPNet.

(b) Improved learning of prototypes without a fixed num-
ber of prototypes per class: Authors of ProtoPNet advo-
cated equal representation via a fixed number of prototypes
per class leading to a lot of prototypes for further analysis.
(Nauta, van Bree, and Seifert 2021) propose to incorporate a
soft decision tree, called ProtoTree, as a hierarchical model

looking into a sequence of decisions through each node pro-
totype to arrive at every test sample. ProtoTree, being IBD
by design, allows retraceable decisions mimicking human
reasoning while reducing the number of prototypes to only
10% of ProtoPNet.

5 Experiments and Discussion
In this section, using different experiments we perform anal-
ysis of the interpretability of the results from the prototype-
based learning methods presented in Section 4. We first look
at image classification tasks, where we consider real-world
datasets and much simplified synthetic dataset in Sections
5.1, 5.3 respectively in light of the desiderata in Section 3. In
Section 5.2, we provide quantitative statistics of our findings
in Section 5.1 based on user-study. Finally, in Section 5.4,
we present a preliminary application of interpretable proto-
types in a real-world OOD detection task.

5.1 This Looks Like That? - Analysis on real data
Here, we provide insights on the interpretability of learnt
prototypes ProtoPNet, ProtoTree and PRP. Experimental se-
tups have been kept identical to the respective original im-
plementations. For PRP, we have reproduced the code as
close as possible to mentioned algorithms in (Gautam et al.
2021). Datasets used for fine-grained and generalised im-
age classification are respectively Caltech UCSD Birds-200-
2011 (200 bird classes) (Wah et al. 2011) and ImageNet-30
(30 distinct classes) (Hendrycks et al. 2019). As per original
setup, ProtoPNet uses ImageNet pre-trained VGG19 mod-
els. ProtoTree uses ResNet-50 models pre-trained on Natu-
ralist for CUB-200 and ImageNet for ImageNet-30. Follow-
ing insights are drawn from the entire test data. Let’s take a
closer look at each method based on the following proper-
ties:

Human-Understandable / Interpretable: ProtoPNet: In
Figure 1, we present samples from models trained on CUB-
200 and ImageNet-30 with 75.9% and 97.0% test accuracy.
In sub-figures (a), we show the 3 closest train and test images
for a given prototype from each class. In a broader sense, the
prototypes, given the context where they are located, bring
forth the understanding that this patch in the test image prob-
ably looks like that prototype. Most prototypes can be suc-
cessfully matched to somewhat similar patches in test im-
ages. But the ‘standalone’ prototypes themselves are not so
human-interpretable such that they can be distinctly identi-
fied as a relevant entity. E.g. for rusty blackbird, the proto-
type shows the neck of the bird, however, from the similarity
activation maps for closest test images, the highest similar-
ity varies from eyes, beak to neck region. This shows that the
imprecise upsampling of the similarity activation maps often
leads to spurious identification of non-relevant parts. Sim-
ilarly, for red-breasted merganser, the probable prototype
showing the backside of its head is confused with its beak,
head or eyes. For the snowmobile class of ImageNet-30, the
skis prototype is matched inaccurately to wheels, tracks and
even the whole vehicle in test images, thus leading to incon-
clusive interpretations.
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Western grebe

Red-breasted 
merganser

Rusty blackbird

Western grebe

Red-breasted 
merganser

Rusty blackbird

(a)

(b) 1 2 3 4 5 6 7 8 9 10

Prototype
Nearest training patches 

with similarity-based activation map
Nearest test patches 

with similarity-based activation map

CUB-200

Snowmobile

(b) 1 2 3 4 5 6 7 8 9 10

Prototype
Nearest training patches 

with similarity-based activation map
Nearest test patches 

with similarity-based activation map

Snowmobile

(a)

ImageNet-30

Figure 1: Results for ProtoPNet using CUB-200 (top) and ImageNet-30 (bottom): (a) shows for a prototype from a given class
- the nearest training and test patches (yellow box) with similarity score based activation maps, (b) shows all the 10 prototypes
(yellow box) learnt for the respective classes in (a).

Prototype
Nearest training images  

with similarity-based LRP heatmap
Nearest test images 

with similarity-based LRP heatmap

Western grebe

Red-breasted 
merganser

Figure 2: Results using PRP to enhance interpretations of ProtoPNet for corresponding CUB-200 classes. The highlighted
regions in red correspond to maximum positive activations corresponding to each prototype.
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Ground truth:
 Western grebe

Present      
Similarity 0.993                   

Present      
Similarity 0.994                   

Present      
Similarity 0.990                   

Present      
Similarity 1.000                   

Present      
Similarity 0.967                   

Western grebe

CUB-200

Ground truth:
 Snowmobile

Present      
Similarity 1.000                   

Present      
Similarity 0.997                   

Present      
Similarity 0.997                   

Present      
Similarity 1.000                   

Absent
Similarity 0.072

Present      
Similarity 0.999                   

Snowmobile

ImageNet-30

Figure 3: Results from ProtoTree on CUB-200 (top) and ImageNet-30 (bottom). For each test image, corresponding path taken
in the decision tree towards final prediction is shown. The node prototypes at each decision-making stage are shown in yellow
boxes in their respective source images along with similarity scores to respective matching parts in test images. Absent node
prototypes are marked in red.

PRP: We compare similar classes in Figures 1(a) and 2 for
CUB-200 to find potential improvement using PRP for the
imprecise upsampling mentioned above. For western grebe,
PRP reassuringly highlights the edges of the upper body as
compared to the imprecise body or tail of the bird shown in
ProtoPNet. For red-breasted merganser however, PRP high-
lights the beaks, while the prototype looks at the backside of
the head, leading to incoherent interpretations. In most sam-
ples, PRP tends to focus on the closest edges that might be
salient when matched to a prototype. Although these expla-
nations are seemingly more precise compared to ProtoPNet,
this does not always enhance the certainty or conviction of
the relevant parts for human interpretation.

ProtoTree: Figure 3 shows samples from models trained
using ProtoTree on CUB-200 and ImageNet-30 with 82.1%
and 91.8% test accuracies. In order to look at the most rel-
evant prototypes used for deciding on a class, we chose
classes from the rightmost branch of the tree to ensure the
traversed node prototypes were ‘present’ in most cases in the
decision path for these classes, namely western grebe and
snowmobile from CUB-200 and ImageNet-30. As pointed
out by the authors, since the prototypes themselves are not
mapped to any particular class, the first prototypes in the
given path are barely relevant for a given class or the indi-
cated matching parts. Prototype 1 in western grebe is hardly
understandable, similarly the third prototype looks at the
black body of a bird but individually the prototype is dif-
ficult to comprehend. Thus, the prototypes themselves are
not entities easily understandable to human-eye particularly,
even more for fine-grained image datasets like CUB which
require expert knowledge.

Semantically Disentangled: Since ProtoPNet and Pro-
toTree learn the prototypes differently, here we analyse

whether they successfully learn distinct prototypes corre-
sponding to distinct semantically relevant parts.

ProtoPNet: In line with the ProtoPNet implementation,
10 prototypes are learnt per class as shown in Figure 1(b).
We observe that the learnt prototypes are often redundant,
i.e. similar prototypes or prototypes looking at similar parts.
E.g. for the western grebe class- prototypes 4, 5, 6, 9, and
10 show neck parts, similarly red-breasted merganser shows
repeated neck (1, 9) and background prototypes (2, 3), even
from the same training image. Most repeated prototypes do
not add a different perspective in terms of looking at differ-
ent details of a semantic part, e.g. there are multiple ski parts
(prototypes 3, 7, and 10) in snowmobile. Overall, prototypes
need to be more distinct and diverse to ensure complete mu-
tually exclusive representation of the entire class. The redun-
dancy could be due to too many pre-determined prototypes
for each class. Thus, we need methods better suited to fine-
tune the optimal number of prototypes to the given dataset
and respective classes.

ProtoTree: In Figure 3, although much lesser number of
prototypes are learnt (10% of ProtoPNet) avoiding redun-
dancy and fewer background prototypes, most of them are
not class-specific thus quite semantically disentangled over
the whole dataset. The prototypes are so diverse that it is
difficult to semantically correlate to the matching parts of
class-specific test images, thus providing limited interpreta-
tions towards learning semantics of any particular class.

Semantically Transformation Invariant: Given a proto-
type, say - the head of a bird, it is essential that our meth-
ods learn representations for these prototypes irrespective
of variations that appear for this particular entity across the
entire dataset, i.e. prototypes should be transformation in-
variant. Since these methods use L2 similarity in the feature
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Test image Nearest prototypes
Corresponding similarity-based 

activation maps in the test image

Original

Crop

Rotate 25°

Figure 4: ProtoPNet results corresponding to transformations (crop, rotate 25◦) for a sample test image (western grebe) showing
the nearest 3 prototypes and their respective region of activations in the given test image. Yellow boxes show the prototypes
and images in red box show prototypes taken from a different class than western grebe.

space for matching relevant test image patches, it is impor-
tant to inspect this property using transformed (rotated and
cropped) test samples.

ProtoPNet: In Figure 4, we show how well prototypes are
recognised given a transformed version of the test image. We
show the top 3 prototypes given a test image and respective
patches they activate in terms of maximum similarity score.
We see that given a cropped head of western grebe, 2 out
of the top 3 closest prototypes belong to different classes.
Similarly, given a rotated version of this same test image by
25◦, one of the closest prototypes is a background prototype
from a different class.

ProtoTree: Repeating above experiments with ProtoTree,
we note that the node prototypes and the path in the tree for
the transformed test images did not change, indicating Pro-
toTree to be more robust to image transformations than Pro-
toPNet. Thus, we do not show these results to save space and
avoid redundancy. Since ProtoTree and ProtoPNet use a dif-
ferent set of augmentations during training, we also trained
a ProtoPNet with the augmentations applied in ProtoTree
(different crops etc.), but this did not improve the perfor-
mance of ProtoPNet against transformations. Possibly, Pro-
toTree learns much fewer prototypes and thus larger seman-
tic distances between prototypes, making it robust to smaller
semantic transformations. However, this needs further inves-
tigation.

Relevant to the Learnt Task: Considering the classifica-
tion task as a ‘Guess who?’ game where by looking at the
learnt prototypes, can we guess the collective class they be-
long to?

ProtoPNet: As observed earlier, the 10 prototypes for
each class shown in 1(b) are often redundant and do not
always represent all the distinct parts of their respective
classes. Nonetheless, some prototypes do provide hints to-
wards the respective classes to make an informed guess like
the white neck prototype for western grebe hints at a bird
with a white neck, or the prototypes showing a black neck,
head or wings for rusty blackbird indicate at least a black

bird. However, whether they sufficiently represent their re-
spective class remains doubtful, particularly for fine-grained
dataset. For more generalised datasets like ImageNet-30, the
prototypes themselves are quite diverse and easier to recog-
nise, often including the entire object in question, e.g. snow-
mobile prototypes (1, 8) showing the whole vehicle. There
are several instances of background prototypes (2, 4, 5 in
snowmobile) which might provide some context to recog-
nise a given class, but in general add to redundancy. Lastly,
it is up to the interpreter to make sense out of these disjoint
bits of information.

ProtoTree: ProtoTree itself does not provide class-specific
prototypes, thus all the node prototypes in a given path
which are marked as ‘present’ (see Figure 3) are often not
relevant directly to the class in question except for the last
few prototypes, e.g. the bird’s eye or the neck for west-
ern grebe. Looking at the prototypes of the snowmobile
class, one would almost guess it as an airplane class ex-
cept for the last prototype with snow. Thus, while prototypes
from ProtoPNet provide some reliable hints as compared to
ProtoTree, both methods perform insufficiently in a ‘Guess
who?’ game.

5.2 Quantitative results based on User Study
To further validate our observations in Section 5.1, we col-
lected statistics based on human assessment of prototypes
of natural images (10 classes of ImageNet-30) to avoid the
need of expert knowledge for fine-grained datasets. The
study comprised of 2 experiments with 15 users: (1) given
prototypes, users were required to identify the class (‘Guess
who?’ game) (2) given each prototype and respective class,
users were asked to determine whether they were ‘use-
ful’ and ‘redundant’. Detailed experiments are given in Ap-
pendix. Figure 5 summarises the results from all experi-
ments, which could be interpreted as follows based on the
questions asked to the users:

‘Guess Who?’ - Average class prediction accuracy for
ProtoPNet was much higher (98%) as compared to Pro-
toTree (55%). This is as expected as ProtoPNet prototypes
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Figure 5: Quantitative results from user study conducted on prototypes from ImageNet-30 classes

could easily be guessed from given ten classes as common
sub-parts of natural images. However, for ProtoTree, many
of the prototypes do not belong to the class and the initial
prototypes on a given branch of a tree are often general
and irrelevant to the class.Thus, these prototypes were of-
ten not semantically relevant or human understandable and
thus, difficult to identify leading to poor prediction accuracy
for ProtoTree.

Prototype usefulness - Only 27% prototypes of ProtoPNet
and 20% of ProtoTree, were found totally useful (100%) for
identifying the class. This leaves a lot of future scope to gen-
erate semantically relevant and yet diverse prototypes that
represents the given class sufficiently for confident human
interpretation.

Prototype non-redundancy - Since we had observed a lot
of redundant or repeating prototypes in cases of fine grained
datasets like CUB-200, hence this experiment was con-
ducted. However, as we noted earlier that for natural images,
the prototypes are much more diverse and non-redundant.
Hence, for this experiment, it leaves an ambiguity whether
the prototypes were actually non-repeating or whether they
were found irrelevant/meaningless and thus marked as non-
redundant (15% for ProtoPNet and 20.6% for ProtoTree).

Using the above statistics, we could further confirm the
need for better methods that can generate truly human-
interpretable prototypes that are semantically relevant, dis-
entangled as well as sufficient to identify a given class.

5.3 Analysis on synthetic data
In previous sections, we observed that it is difficult to obtain
human-interpretable prototypes with the wide range of com-
plexities associated with real-world datasets, like the opti-
mum number of prototypes required to define a class, vary-
ing semantics, cluttered background, overlapping concepts,
etc. Thus, we created synthetic datasets (3D-Shapes) in a
controlled setting where each shape can be related a proto-
typical concept and re-evaluated the performance of above
methods. The 3D-Shapes datasets consist of combinations of
rendered 3D shapes in varying arrangements(Johnson et al.
2017).

Class 0

Class 1

Class 2

Prototype 
1

Prototype 
2

Prototype 
3

(a) ProtoPNet
0

1

Absent
4

Present

2

Absent

0

Present

0

Absent

1

Present

(b) ProtoTree

Figure 6: Results using synthetic 3D-Shapes dataset (V1)
showing in (a) prototypes from each class using ProtoP-
Net and (b) the node prototypes along with decision tree
(depth=2) using ProtoTree. Generated dataset V1 consists of
3 classes with 3 non-exclusive shapes- class 0 (cube, sphere,
cone), class 1 (sphere, cylinder, icosphere) and class 2 (cone,
torus, icosphere). Yellow boxes show the prototypes.

Dataset with overlapping concepts (V1): This dataset con-
sists of 3 classes with 3 non-exclusive shapes each, resem-
bling the original fine-grained classification setting. Exem-
plary results for ProtoPNet and ProtoTree are given in Fig-
ure 6. Ideally, each shape in a class should correspond to
a prototype. Like in Section 5.1 for ProtoPNet, we observe
redundant repeating prototypes even in this simplified set-
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ting. Also all the prototypes of one class focus on the back-
ground, however they still contribute to a high test accuracy.
The learnt prototypes are not semantically relevant in a way
humans would classify 3D shapes. Often they focus on se-
mantically mixed patches like parts of both cube and cone in
class 0. Similarly, in ProtoTree the decision paths using the
highlighted prototypes do not follow human logic, as e.g.
the path to class 2 is reached via 2 absent prototypes (partial
icosphere, sphere), whereas the icosphere should belong to
class 2. Instead it arrives at class 2 by eliminating images
from class 1 and 0.Thus, the prototypes are not semantically
relevant for classification nor matching to the class.

Dataset with non-overlapping concepts (V2): This dataset
is designed to be even simpler with 3 classes composed
of 2 shapes each which are mutually exclusive with other
classes. For each class, we expect that two distinct pro-
totypes corresponding to each shape should be learnt. For
ProtoPNet, we observe that both prototypes for each class
are similar (redundant) which is relevant to the classifica-
tion task as there is no incentive to learn the other shape;
however, for practical use-cases we expect it to learn dis-
tinct and diverse prototypes. With limited number of con-
cepts, no more background prototypes are observed, though
the learnt prototypes often focus on mixed patches and are
not semantically human-understandable. In ProtoTree, the
decision tree mostly follows a logical structure es expected
by a human. However, some prototypes are still not human-
understandable as they do not match to the corresponding
indicated parts, for e.g. the prototype with partial edges of
the cube somehow finds the sphere in the test image as the
corresponding matching part.

Details regarding above datasets and experiments are
given in Appendix. Ideally, recognising a class based on
interpretable prototypes as prior evidence would help us
make more informed classification decisions particularly for
safety-critical use-cases.

5.4 Application for Real-World Tasks
Taking cue from the above mentioned properties, where we
assume ideally prototypes are human-interpretable and se-
mantically disentangled, one potential real-world applica-
tion could be to distinguish OOD samples from samples be-
longing to ID classes. It is assumed that OOD samples would
have very different prototypes as compared to ID. A simple
approach would be to distinguish test ID and OOD samples
based on their L2 distances to the nearest prototypes. We
train a ProtoPNet on 150 (out of 200) bird classes from the
CUB-200 dataset as ID training data. The remaining 50 bird
classes serve as ‘Near OOD’ data. As the prototypes from
this OOD data are still from the birds dataset, they are ex-
pected to be semantically similar to ID prototypes. SVHN
(Netzer et al. 2011), a dataset consisting of housing num-
bers, is taken as ‘Far OOD’ data. The Area Under ROC
curve (AUROC) provides an evaluation metric for OOD de-
tection and the results are shown in Figure 7. We observe
a lot of OOD samples having closely overlapping L2 dis-
tances in ‘Near OOD’ setting, which is concurrent with the
fact that OOD prototypes are very similar to ID prototypes
and thus performs poorly in terms of AUROC (69.1%). In
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Figure 7: Histogram showing distribution of L2 distances to
closest prototypes for Near vs Far OOD samples for a model
trained on first 150 classes of CUB-200 dataset.

‘Far OOD’ setting, SVHN samples are distinctly separated
in terms of L2 distances from training prototypes, which
leads to an AUROC of 95.8% in terms of OOD detection.
We remark that this approach might not be an absolute rep-
resentative of the separation of ID and OOD prototypes in
the feature space.

6 Conclusions and Future Work
In this work, we have assessed the interpretability of the
prototypes learnt from various prototype-based IBD meth-
ods in terms of visual relevance to humans. To that end, we
first defined a set of desired properties of the prototypes as
a basis for our analysis of three different approaches: Pro-
toPNet, ProtoTree and Prototypical Relevance Propagation
(PRP). We found ProtoPNet generates somewhat relevant
prototypes but suffers from a lot of redundancy and a lack
of semantically distinct prototypes. ProtoTree produces se-
mantically diverse prototypes which are less redundant but
mostly not relevant. PRP addresses the imprecise upsam-
pling of ProtoPNet but does not conclusively contribute to
better interpretability. Overall, standalone prototypes indi-
vidually (without matching location context) are mostly not
human-interpretable and there is still a long way to go.

Potential future work should focus more on improving the
quality of the learnt prototypes in terms of valuable human-
understandable interpretations as well as explore techniques
to diversify the prototypes to avoid redundancy. One way
to improve quality of explanations as well as improve trust-
worthiness in high-stake decisions would be to utilise human
feedback during the learning phase to identify useful proto-
types as a potential next step. This could also strengthen the
need to demonstrate and validate which properties are ac-
tually required for interpretability and for effective internal
assessment of models. As observed already, given relevant
prototypes, OOD detection could largely benefit from inter-
pretable prototypes which calls for finding better techniques,
particularly in ‘Near OOD’ regime.

A Additional details and discussion about
conducted User Study

In this section, we provide further experimental details re-
garding the user study conducted in order to support results
in Section 5.2.
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The goal of the user study was to collect user statistics
regarding our findings. It was organised as follows:
• Dataset: ImageNet-30 dataset was chosen so that users

can easily guess the prototypes from natural images, un-
like fine-grained datasets like CUB-200 which would re-
quire expert knowledge. 10 classes were selected which
are commonly known.

• User group: Statistics from a user group of 15 partici-
pants were generated. Participants were given sufficient
prior examples from both the methods to understand the
experiments.

• Experiments: The goal was to generate generically in-
terpretable responses. Users were given two experiments
to be repeated for each of the two methods - (1) In the
‘Guess Who?’ experiments, all the prototypes from each
class were given side by side and the user was required to
choose from one of the 10 classes. This made the prob-
lem much easier as one was only required to match proto-
types with few given options, particularly for ProtoPNet.
For ProtoTree, prototypes present in the decision path for
a particular class were selected. This was confusing to
users because prototypes in the beginning of the decision
path of a tree did not represent the class, as observed al-
ready.
(2) Here, for each prototype the respective class was
given and the user had to answer two questions: ’Whether
the given prototype was useful for identifying the class?’
and ’Whether the concept shown in prototype is some-
how repeating and redundant?’. Users had to choose ei-
ther ‘Yes/ No’. For the latter question, often irrelevant
prototypes were marked non-redundant, i.e. ‘No’.

B Additional experimental details about
synthetic data: 3D-Shapes

In this section, we provide further experimental details and
results to support our observations in Section 5.3, regard-
ing performance of ProtoPNet and ProtoTree using synthetic
datasets in a simplified setup.

B.1 Datasets
We create two different datasets consisting of six 3D shapes
rendered in varying combination, colours, sizes and arrange-
ments. These shapes are: cone, cube, cylinder, icosphere,
sphere, torus. Each dataset consists of 3 classes. Ideally,
each shape is treated as one prototypical concept defining
one class. Thus, a class consisting of 3 shapes is can be re-
lated to have atleast 3 prototypes. Each dataset contains 1500
samples with 500 samples from each class. The composition
of each dataset is given as:

Dataset V1- consists of 3 concepts per class with atleast
one concept overlapping with other classes in order to re-
semble fine-grained image classification setting:
• Class 0 : cube, sphere, cone
• Class 1 : sphere, cylinder, icosphere
• Class 2 : cone, torus, icosphere

Dataset V2- consists of 2 non-overlapping mutually ex-
clusive concepts:

• Class 0 : cube, sphere
• Class 1 : cylinder, cone
• Class 2 : torus, icosphere

B.2 Experiments and Discussion
We extend our observations from Section 5.2 to the results
for both fine-grained and general image classification setup
as follows:

Dataset with overlapping concept (V1): Figure 8, 9 show
the extended results using ProtoPNet and ProtoTree respec-
tively using V1 dataset. In addition to the observation for
ProtoPNet that the model does not look at the definite
shapes, it rather focuses on patches showing partial shapes
and that too in a redundant fashion. This is evident from the
activation maps of the prototypes in Figure 8(a) where all
the prototypes from class 0 focus on entangled patches con-
sisting of bottom edges of both cubes, cones and those from
class 2 focus on patches with partial torus, background. This
insight is also consistent with other closest training and test
images for the respective prototypes in Figure 8(b). Thus,
we can safely confirm that prototypes are neither human-
interpretable nor semantically relevant or disentangled. Sim-
ilarly looking at the decision paths for sample test images
in ProtoTree in Figure 9(b): for test image from class 1 the
first prototype probably focuses on icosphere somehow finds
similar to the sphere and the second prototype vaguely point-
ing to the background below the cylinder finds a match to a
cylinder and finally ends up with a correct prediction. Thus,
the prototypes themselves are neither semantically human-
interpretable nor relevant.

Dataset with non-overlapping concept (V2): Figures 10,
11 show the illustrations for ProtoPNet and ProtoTree cor-
responding to the observations already made in Section 5.2.
For ProtoPNet, due to absence of overlapping concepts as
compared to dataset V1 one would expect distinct prototypes
to be learnt for each shape, however we observe only one of
the partial shapes is learnt as prototypes and that too in a
similar repeating manner. E.g. all prototypes for class 1 only
focuses on the top part of the cone as seen in all the near-
est train/test images. Similarly the prototype 2 from class
0 seemingly looks at the base of the cube, however the ac-
tivation maps from closest train/test images reveal bottom
edge of the sphere as well. Thus, while these prototypes are
consistent and do not focus on background as in V1, their
semantic nature is still far from human-understanding. For
the samples for ProtoTree, we illustrate with similar obser-
vations as in V1 and Section 5.2.
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Figure 8: Results for ProtoPNet using 3D-Shapes with overlapping 3D shapes as concepts (Dataset V1): (a) shows 3 classes
with respective 3 prototypes (yellow box) and corresponding activation maps (b) shows closest training and test patches with
activation maps for 2 sample prototypes from above.
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Figure 9: Results for ProtoTree using 3D-Shapes with overlapping 3D shapes as concepts (Dataset V1): (a) shows decision
tree (depth = 2) with node prototypes (yellow box) and classes as leaves (b) shows decision paths for 2 test images with
corresponding matching patches (yellow box) to the node prototypes.
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Figure 10: Results for ProtoPNet using 3D-Shapes with non-overlapping concepts (Dataset V2): (a) shows 3 classes with re-
spective 2 prototypes (yellow box) and corresponding activation maps (b) shows closest training and test patches with activation
maps for 2 sample prototypes from above
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Figure 11: Results for ProtoTree using 3D-Shapes with overlapping 3D shapes as concepts (Dataset V2): (a) shows decision
tree (depth = 2) with node prototypes (yellow box) and classes as leaves (b) shows decision paths for a test image with
corresponding matching patches (yellow box) to the node prototypes.
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