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Abstract

Federated Learning (FL) is a distributed machine learning
paradigm where clients collaboratively train a model using
their local (human-generated) datasets. While existing stud-
ies focus on FL algorithm development to tackle data het-
erogeneity across clients, the important issue of data qual-
ity (e.g., label noise) in FL is overlooked. This paper aims
to fill this gap by providing a quantitative study on the im-
pact of label noise on FL. We derive an upper bound for the
generalization error that is linear in the clients’ label noise
level. Then we conduct experiments on MNIST and CIFAR-
10 datasets using various FL algorithms. Our empirical re-
sults show that the global model accuracy linearly decreases
as the noise level increases, which is consistent with our the-
oretical analysis. We further find that label noise slows down
the convergence of FL training, and the global model tends to
overfit when the noise level is high.

Introduction
Federated Learning (FL) is a distributed machine learn-
ing paradigm where clients (e.g., distributed devices or or-
ganizations) collaboratively train a global model (Kairouz
et al. 2021). The local data of the clients are often human-
generated and have critical privacy concerns. An FL pro-
cess consists of some communication rounds. In each round,
each client trains its local model with its local data and
then uploads the model updates to a central server (Hsu,
Qi, and Brown 2019). The central server aggregates the
local updates from clients and sends back an aggregated
global model to all clients. After that, clients update their
local models according to the information from the cen-
tral server (Collins et al. 2022). The client-server interaction
stops when the global model converges.

There has been an increasing volume of research studies
on FL over the last few years (Kairouz et al. 2021; Wang
et al. 2021; Li et al. 2021b; Jiang et al. 2022). Among these
studies, a critical bottleneck, which without appropriate al-
gorithmic treatment usually fails FL, is data heterogeneity
(non-IID). For example, in a classification task, some clients
may collect more data for class A while others may collect
more data for class B. Previous studies among this line fo-
cused on two categories of non-IID: attribute skew and la-
bel skew (Zhu et al. 2021). Attribute skew refers to the case

where the feature distribution of each client is different from
one another. For example, attribute skew could occur in a
handwritten digit classification task as users may write the
same digit with different font styles, sizes, and stroke widths
(Kairouz et al. 2021). Label skew refers to the case where the
label distribution of each client is different from one another.
Label skew, for example, could occur in an animal recogni-
tion task. Label distributions are different because clients are
in different geo-regions and different animal habitats — dol-
phins only live near coastal regions, or aquariums (Kairouz
et al. 2021).

While existing studies focus on tackling the non-IIDness,
some implicitly assume that the data are clean, i.e., the
data are correctly labeled. In practical applications, however,
clients’ datasets usually contain noisy labels (Northcutt,
Athalye, and Mueller 2021). Label noise has been identified
in many widely used FL datasets, including MNIST (North-
cutt, Jiang, and Chuang 2021; LeCun and Cortes 2005),
EMNIST (Al-Rawi and Karatzas 2018; Cohen et al. 2017),
CIFAR-10 (Krizhevsky 2009; Al-Rawi and Karatzas 2018),
ImageNet (Northcutt, Jiang, and Chuang 2021; Russakovsky
et al. 2014), and Clothing1M (Xiao et al. 2015). The causes
of label noise can be human error, subjective labeling tasks,
non-exact data labeling processes, and malfunctioning data
collection infrastructure (Johnson and Khoshgoftaar 2022;
Chen et al. 2021). Moreover, in an FL setting, as clients col-
lect and label local data in a distributed and private fashion,
their labels are likely to be noisy and have different noise
patterns (Xu et al. 2022). For example, wearable devices
can access various human-generated data, such as heart rate,
sleep patterns, medication records, and mental health logs.
Such data could contain different levels of label noise due
to various sensor precision issues and human bias (Kim, Jo,
and Choi 2021).

Label noise is known to lessen model performance (John-
son and Khoshgoftaar 2022). This paper focuses on the issue
of label noise in FL, and we are particularly interested in an-
swering the following two key questions:

• Question 1: How does label noise affect FL conver-
gence?

• Question 2: How does label noise affect FL generaliza-
tion?

To answer Question 1, we conduct numerical experiments
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and show that the training loss converges slower with a
higher noise level. To answer Question 2, we proceed from
both theoretical and empirical perspectives. First, under mi-
nor assumptions, we prove that, for any distributed learning
algorithm, the generalization error of the global model is lin-
early bounded above by a multiple of the system noise level.
Then we conduct experiments using MNIST and CIFAR-
10, showing that the results are consistent with the assump-
tions and theoretical results. We further show that the global
model’s accuracy decreases linearly in the clients’ label
noise level.

The key contributions of this paper are summarized be-
low.

• To the best of our knowledge, this is the first quantitative
study that analyzes the impact of label noise on FL. Our
study bears practical significance for its use in different
applications, e.g., incentive design (Huang et al. 2022).

• We provide a generic upper bound on the FL general-
ization error that applies to any FL algorithms. We fur-
ther obtain a tighter upper bound considering the widely
adopted ReLU networks in clients’ local models.

• We run experiments under various algorithms and dif-
ferent settings in FL. Our numerical results justify our
theoretic assumption. We also observe that label noise
linearly degrades FL performance by reducing the test
accuracy of the global model.

• Our study reveals several important and interesting in-
sights. (1) Label noise slows down FL convergence;
(2) label noise induces overfitting to the global model;
(3) among three benchmark FL algorithms, SCAFFOLD
(Karimireddy et al. 2020) achieves the best test accuracy
than other algorithms with minor label noise, while Fed-
Nova (Wang et al. 2020) achieves the best test accuracy
with more extensive label noise.

Related Work
Label noise
Label noise has been an active topic in FL over the last
few years. We classify the existing methods into three cate-
gories: (1) Some methods apply noise-tolerant loss functions
to achieve robust performance (Sharma et al. 2022).
(2) Some methods distill confident training sample by se-
lection or a weighting scheme (Chen et al. 2021; Yang et al.
2022b,a; Ma et al. 2021; Chen et al. 2020; Fang and Ye 2022;
Duan et al. 2022; Han and Zhang 2020; Li et al. 2021a; Kim
et al. 2022; Li, Pei, and Huang 2022; Tuor et al. 2021). Li
et al. discovered that label noise might cause overfitting for
FedAvg algorithm. However, they did not analytically char-
acterize the hidden linear relation between noise level and
the global model’s performance.
(3) Based on (2), some methods further correct noisy sam-
ples (Xu et al. 2022; Zeng et al. 2022; Wang et al. 2022;
Tsouvalas et al. 2022). Tsouvalas et al. proposed FedLN that
estimates per-client noise level and corrects noisy labels.
However, their definition of label noise is limited because
they only considered the engineering method to generate la-
bel noise as the definition of label noise. They considered a

case where conditional distributions1 Pr(label|feature) are
the same across clients (Kairouz et al. 2021). But in practice,
the conditional distributions could be different for different
clients. We provide a more general definition in this work
and fill this gap. Xu et al. studied an FL scenario where dif-
ferent clients have different levels of label noise (Xu et al.
2022). They introduced local intrinsic dimension (LID), a
measure of the dimension of the data manifold. They discov-
ered a strong linear relation between cumulative LID score
and local noise level. However, their work did not provide ei-
ther empirical observation or theoretical results on the rela-
tion between the global model’s performance and local noise
level. Moreover, there is no systematic study on how label
noise affects FL in terms of convergence and generalization.
We bridge this research gap in this work.

Path-norm
This work uses path-norm to measure the global model’s
generalization ability under label noise. People introduced
different measures to explain the generalization ability of
neural networks (Zheng et al. 2019; Jiang* et al. 2020).
Behnam Neyshabur et al. proposed path-norm as a capac-
ity measure for ReLU networks (Neyshabur, Salakhutdinov,
and Srebro 2015; Neyshabur et al. 2017). Empirical studies
showed that path-norm positively correlates with generaliza-
tion in all categories of hyper-parameter (Jiang* et al. 2020).

The value of path-norm increases throughout the learn-
ing process. E et al. showed that the path-norm increases at
most polynomially under centralized training (Weinan et al.
2020). In this work, we conduct the first formal study on
the evolution of path-norm in FL. This is also the first work
that analyzes the generalization ability of models in FL with
path-norm proxy. We introduce path-norm proxy to the FL
context because this proxy does not require unrealistic as-
sumptions and allows us to characterize a large class of
FL algorithms. For example, the assumptions on convexity,
smoothness, etc., are no longer necessary in our analysis.
Moreover, we have empirically verified our theory based on
the definition of path-norm proxy.

Preliminaries and Problem Statement
Federated Learning
In this subsection, we briefly introduce the problem formu-
lation and algorithmic framework of FL.

Consider a typical FL task (Kairouz et al. 2021), where N
clients collaboratively train a global model under the coordi-
nation of a central server through R communication rounds.
FL aims to solve a distributed optimization problem with
distributed data. Here we first introduce the objective of the
distributed optimization problem and then define the rele-
vant notations. The objective is

min
W∈W

1

N

N∑
k=1

[
1

nk

nk∑
i=1

ℓ(f(xk,i;W ), yk,i)

]
(1)

where we define
1In some work, the conditional distribution is also referred to as

“feature-to-label mapping”.
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• Hypothesis space: W ⊂ Rdw denotes the hypothesis
space of all feasible parameters of learning models, and
dw ∈ N is the dimension of the hypothesis space.

• Local data: Each client has a local dataset Sk. We assume
that in the k-th dataset Sk, each data point is drawn from
a distribution πk over S ⊂ Rdx+dy where dx denotes the
dimension of feature space and dy denotes the dimension
of the label space. A data point (x, y) ∈ Rdx+dy is a real-
valued vector where x ∈ Rdx denotes its feature and y ∈
Rdy denotes its label. There are in total nk data points in
client k’s local dataset

Sk = {(xk,1, yk,1), (xk,2, yk,2), . . . , (xk,nk
, yk,nk

)}

Let µk denote the ground truth distribution (i.e., clean
labels) and πk denote client k’s possibly noisy data dis-
tribution. There exists label noise in the local dataset of
client k if there exists x ∈ Rdx , y ∈ Rdy such that

Prµk
(y|x) ̸= Prπk

(y|x) (2)

where Pr represents a probability mass/density function
with a given distribution and an event. One can consider
the data points sampled from πk as training data and
those sampled from µk as test data.

• Global parameter and local parameter: We denote the
global model’s parameter as a real-valued vector W ∈
W . Each client has a local model with parameter wk ∈
W .

• Meta model: We define the meta model f : Rdx ×W →
Rdy as a function that maps the data feature and model
parameter to an estimated label. For example, a meta
model could be a neural network with variable param-
eters. We obtain a model by substituting the variable pa-
rameters with real number values.

• Loss function: We denote the loss function as

ℓ : Rdy × Rdy → R≥0

For example, a squared loss function is defined as ℓ :
(y, ŷ) 7→ ∥y − ŷ∥2.

In each communication round, a client trains its local
model for E epochs to minimize the local training loss
1
nk

∑nk

i=1 ℓ(f(xk,i;W ), yk,i) over its local dataset Sk. After
local model training, the clients upload their local model pa-
rameters wk to a central server. The central server aggregates
the uploaded parameters and updates the global model’s pa-
rameter W . After that, the central server sends the global
model’s new parameter back to each client. We provide a
general FL framework in Algorithm 1.

Different FL algorithms use different aggregation mecha-
nisms. We use FedAvg as an example to explain the aggre-
gation step in Algorithm 1. In FedAvg, the aggregation is
defined as

ϕ : (w1, . . . , wN ,W ) 7→ (1− ηgl)W + ηgl

∑N
k=1 wk

N
(3)

where ηgl denotes the global learning rate. Note that in a re-
alistic setting, there could be limitations on computation and

Algorithm 1: A General FL Framework

Initialization: Local datasets {S1, S2, . . . , SN}, aggrega-
tion function ϕ

Output: Global model parameter vector W and local
model parameter vectors {w1, w2, . . . , wN} after the R-
th communication round

1: for t← 1 to R do
2: Parallel for k← 1 to N do
3: for i← 1 to E do ▷ local training
4: Update local model parameter wk

5: end for
6: Send wk to the central server
7: end for
8: W ← ϕ(w1, . . . , wN ,W ) ▷ aggregation
9: for k← 1 to N do ▷ broadcast

10: Send W to client k
11: Update local model parameter wk according to

W
12: end for
13: end for

communication, including computational efficiency, com-
munication bandwidth, and network robustness (Ghosh et al.
2020). For example, some clients may fail to communicate
with the central server due to network issues. Therefore, the
server only samples a subset of available clients. Since we
focus on data noise, we ignore these realistic considerations
and assume that all clients participate in all communication
rounds.

Model performance
This subsection introduces the theoretical tools to measure a
learning algorithm’s performance. Here we inherit most no-
tations from the last part with some revisions. We consider
fixed data points for a FL process in the previous part. But in
this part, we consider each data point and each local dataset
Sk as random variables to investigate the generalization per-
formance of an algorithm given an arbitrary training dataset.
The pair (x, y) in lowercase represents a deterministic data
point, and the pair (X,Y ) in uppercase represents pair of
random variables. We re-write a local dataset Sk as

Sk = {(Xk,1, Yk,1), (Xk,2, Yk,2), . . . , (Xk,nk
, Yk,nk

)}

where (Xk,i, Yk,i) ∼ πk. We define the empirical risk L :
W → R≥0 of the global model as

L(W ) =

N∑
k=1

nk

n
Eπk

[ℓ(f(X;W ), Y )] (4)

where n :=
∑N

k=1 nk and W denotes the parameter of the
global model. Given the ground truth distribution µk of each
client, we further define the ground-truth risk L† : W →
R≥0 of the global model as

L†(W ) =

N∑
k=1

nk

n
Eµk

[ℓ(f(X;W ), Y )] (5)
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Then we define the generalization error of the global model
as (Yagli, Dytso, and Vincent Poor 2020)

G(W ) :=
∣∣L†(W )− L(W )

∣∣ (6)

Path-norm proxy

Figure 1: An L-layer ReLU network.

This paper uses ReLU network and path-norm proxy for
a case study of the generalization error. The authors in
(Weinan et al. 2020) provided a mathematical description
of ReLU networks. Based on their definitions, we define the
path-norm proxy below.
Definition 1 (Path-norm proxy (Weinan et al. 2020)). The
path-norm proxy of an L-layer ReLU network is defined as

∥f(·; θ)∥pnp =
∑

(i0,...,iL+1)

L∏
l=0

|θl(il, il+1)| (7)

where θ denotes the parameter vector of the ReLU network;
θl(il, il+1) refers to the weight of the edge connecting the
il-th node in layer l and the il+1-th node in layer l + 1.

The authors in (Weinan et al. 2020) also proved that the
path norm proxy controls the generalization error in a cen-
tralized learning setting. Next, we will show that the path
norm proxy controls the generalization error in FL.

Theoretical Results
In this section, we provide a theoretical analysis of the gen-
eralization error of the global model in FL. In particular, we
give proof of the upper bound of the global model’s gener-
alization error.

In practical FL applications, local data distributions are
complicated as we cannot explicitly find the distribution
functions. To simplify our theoretical analysis, we make the
following assumption:
Assumption 2 (Simplified label noise condition). For any
client i and client j, we assume

∀(x, y) ∈ Rdx+dy ,Pr(x;πi) = Pr(x;πj) (8)

This assumption assures the feature distributions to be iden-
tical for all clients, which is a standard setting in studies
about concept drift (Jothimurugesan et al. 2022). Although
it is difficult to show that Assumption 2 holds in our exper-
iment settings, the numerical results are still consistent with
our theoretical results.

We first provide a general result on the upper bound of
generalization error in Theorem 3. Then we extend this gen-
eral bound by studying some specific cases with more as-
sumptions in Corollary 8.

Theorem 3 (Bound the evolution of generalization error).
Consider any Federated Learning algorithm with a neural
network with an arbitrary structure for a classification task
of C classes under label noise and use the cross-entropy
function for loss computation, then under Assumption 2

G(W ) ≤ Ω · EX

[∑C
i=1

∑N
k=1

nk

n |Prµ(Y = i|X)− Prπk
(Y = i|X)|

]
(9)

where Ω is the upper bound of f .

Interpretation of Theorem 3: This theorem implies that
the generalization error of global model in FL is linearly
bounded by the degree of label noise in the distributed sys-
tem. The theorem quantitatively characterizes the impact of
label noise. This linear bound is also consistent with our em-
pirical findings. When N = 1, this linear bound applies to
centralized learning.

We can interpret the expectation term in the upper bound
with an example. In this example, we set N = 2, i.e., two
clients. The input space consists of 25 discrete grid points
and two classes. Client 2’s local data distribution is identical
to the ground truth. Client 1 has label noise in its local data
where three circled data points in class A are mislabelled as
class B.
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(a) Data distribution of client 1
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(b) Data distribution of client 2

Figure 2: An example of label noise.

If the two clients has the same number of data samples, i.e.,
n1 = n2, then

EX

[
C∑
i=1

N∑
k=1

nk

n
|Prµ(Y = i|X)− Prπk

(Y = i|X)|

]

= EX

[
C∑
i=1

1

2
|Prµ(Y = i|X)− Prπ1

(Y = i|X)|

]

=
1

2

(
1

5
·
∣∣∣∣15 − 4

5

∣∣∣∣+ 1

5

∣∣∣∣45 − 1

5

∣∣∣∣) =
3

25
(10)

This expectation represents the expected percentage of
noisy data points in a dataset, e.g. there are in total 25 grid
points and 3 noisy data points in Fig 2a.

Now we consider a slightly different example where client
2 also has label noise as shown in Figure 3. Then the expec-
tation is 4

25 .
Before we prove Theorem 3, we need a lemma on cross-

entropy.
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Figure 3: An example of label noise.

Lemma 4. Consider a classification problem of C classes.
Given a data distribution π such that (x, y) ∼ π, y ∈ [1 :
C], a neural network f and a probability measure Pr, then
the expectation of cross-entropy loss is

−
C∑
i=1

Prπ(Y = i)EX|Y=i

[
fi(X)− log

(
C∑

r=1

exp(fr(X))

)]
(11)

In most machine learning tasks, it is reasonable to assume
that the input and output of the model are bounded, which
we formalize in Assumptions 5 and 6.

Assumption 5 (Bounded input space). The input space X
is bounded in [0, 1]dx ⊂ Rdx .

Assumption 6 (Bounded model output). Consider a neural
network f : Rdx × W → Rdy . We assume that its range
f(Rdx ;W) is bounded in Rdy . That is, ∃Cf ≥ 0 such that
∀x ∈ Rdx ,∀θ ∈ W,∀i ∈ {1, . . . , C}, Cf ≥ |fi(x; θ)|.

Note that the upper bound of model output could change
as we train the model for more epochs. To model the evolu-
tion of the output upper bound, we can relax Assumption 6
and study a specific family of classifiers: ReLU networks.
Later we can bound the generalization error evolution given
the growth of path-norm proxy through iterations.

Proposition 7 (Polynomial growth of path-norm proxy).
Consider an FL process with a L-layer neural network
f : Rdx × W → Rdy as its global model, assume that its
path-norm increases at most polynomially,

∥f(·; θ(t))∥pnp = O(tL+1E(L+1)/2) (12)

where t ≤ R denotes the number of communication rounds
and E denotes the local training time.

If we consider a generic decentralized algorithm, we have

∥f(·; θ(t))∥pnp = O(eC
′t(L+1)E(L+1)/2) (13)

where C ′ is a constant independent of t, L,E.

Corollary 8. We can specify Ω in Theorem 3 with various
assumptions:

1. By Assumption 6, Ω = Cf .
2. If we use a ReLU network as our model in the FL task,

then Ω = ∥f(·; θ(t))∥pnp.

3. By Assumption 5 and Proposition 7,

Ω = C0t
L+1E(L+1)/2

where C0 is a constant independent of t, E, L.
There are some important implications behind Corol-

lary 8.
• Since the first two statements of the corollary do not

rely on the aggregation mechanism of the algorithm, they
could also be extended from FL to a decentralized learn-
ing scenario, e.g. Swarm learning in decentralized clini-
cal ML (Warnat-Herresthal et al. 2021), decentralized op-
timization algorithms (Zhang, Ahmad, and Wang 2019;
Luo and Ye 2022), ML on blockchain (Liu et al. 2020).

• Theorem 3 does not characterize the upper bound with
communication rounds and local epochs in its general
form. But it is a symbolic and concise term that helps us
understand the impact of label noise. Nonetheless, case
3 in Corollary 8 provides the interplay between the label
noise, communication rounds, and local epochs.

Numerical Results
We present three numerical experiments to validate our the-
oretical results and draw new insights. We first verify our
theoretical work on the path-norm proxy. Then we show ex-
periments of 2-client, 4-client, and 15-client FL settings.

Our main findings are 1) the growth of path-norm proxy
empirically increases in a polynomial order in FL; 2) there
exists an approximate negative linear relation between the
test accuracy of global model and the number of incorrectly
labeled data; 3) label noise slows down the convergence of
FL algorithms and induces over-fitting to the global model.

Path-norm Proxy
In this subsection, we study the path norm proxy and observe
its relation with the number of layers and communication
rounds.
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Figure 4: A case study on MNIST dataset. (a) The path-norm
generated by different FL algorithms with 3-layer ReLU net-
work. (b) The path-norm generated by FedAvg algorithm
and ReLU networks with different numbers of layers.

Compare different FL algorithms. We use the same neu-
ral network structure and consider N = 4 clients. We study
three FL algorithms, FedAvg (McMahan et al. 2017), SCAF-
FOLD, and FedNova on MNIST dataset. We observe a con-
cave growth of the global model’s path-norm in Figure 4a.
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We can sort the three algorithms according to the scale of
their path-norm values

Path norm value: FedNova > SCAFFOLD >> FedAvg

which corresponds to their different usage of local gradient
grad and local parameter change ∆w

Algorithm Aggregation input
FedNova grad

SCAFFOLD grad,∆w
FedAvg ∆w

These results empirically show that the path norm in-
creases polynomially in FL.
Compare ReLU networks with different numbers of lay-
ers. We train ReLU networks using FedAvg on MNIST. We
use different numbers of layers in {2, 3, 4}. The result is
illustrated in Figure 4b. To verify the polynomial rule, we
use a logarithmic scale on the y-axis. The three path-norm
curves have similar shapes and almost differ up to a constant
factor. This result is consistent with Proposition 7.

Pilot experiments
We run 2-client experiments with FedAvg algorithm on
MNIST dataset. We study a 2-client setting for multiple con-
siderations.

• 2-client setting exists in practice. In cross-silo FL, clients
could be enterprises, and each client could provide abun-
dant data, so the total number of clients is relatively
small. For example, since 2019, two insurance compa-
nies, Swiss Re and WeBank, have collaborated on feder-
ated learning (Huang, Huang, and Liu 2022).

• This experiment serves as a starting point and gives us
a thorough pedagogical understanding of the impact of
label noise. We will study the 4-client and 15-client cases
in the next subsection.

We generate the local datasets for two clients by divid-
ing the whole dataset into two equally-sized parts. We add
label noise to local datasets by uniformly flipping some in-
stances’ labels to other class labels. Each client has different
noise levels. Denote the noise level of client i as wpi, then
(wp1,wp2) ∈ {0%, 10%, 20%, . . . , 80%, 90%}2. Patholog-
ical noise levels (greater than 50%) have been studied in su-
pervised learning settings (Luo et al. 2022). We illustrate the
test accuracy of global models under different degrees of la-
bel noise as bar charts in Fig 5. To verify the linear trend of
test accuracy, we perform linear regression and visualize the
result in Fig 6.
Negative bilinear trend by label noise. Figure 5 shows a
negative bilinear relation between the test accuracy of the
global model and noise label. When we apply linear regres-
sion on the test accuracy of the global model and the pro-
portion of wrongly labeled data, we obtain a coefficient of
determination of 0.98 in Figure 6. That means the relation
between the test accuracy and label noise has a strong linear
relation.
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Figure 5: (a) Bar plot of global model accuracy. x,y axes con-
trol the levels of label noise of each client. z axis represents
the test accuracy of the global model; (b) Slice of bar plot
when client 1 has 30% of wrongly labelled data; (c) Slice of
bar plot when client 2 has 10% of wrongly labelled data.
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Figure 6: Linear regression on the global model accuracy.

Experiments with larger cohort size
We run experiments on CIFAR-10 dataset respectively with
four clients and fifteen clients. Local datasets are generated
by dividing the whole dataset into equally-sized parts. We
add label noise to local datasets by uniformly flipping some
instances’ labels to other class labels. In a case study by Gu
et al., the real human annotation has a rater error rate of
around 4.8% (Gu et al. 2022). Therefore it is reasonable to
study the error rate within a relatively small range that con-
tains 4.8%, i.e., from 0% to 10%. We set the same proportion
of wrongly labeled data for each client (0%, 2%, 4%, 8%).
Slow Convergence by label noise. In Figure 7 and Figure 8,
we plot how client 1’s local model loss depends on the com-
munication rounds at different percentages of wrongly la-
beled data. The training loss decreases slower with a larger
proportion of wrongly labeled data, i.e., the algorithm con-
verges slower with a larger proportion of wrongly labeled
data.
Overfitting by label noise. We observe in Figure 9 that for
all three algorithms, the global model’s test accuracy de-
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Figure 7: Training loss of Client 1 for 0%, 2%, 4%, 6%, 8%
percentages of wrongly labelled data (4-client setting).
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Figure 8: Training loss of Client 1 for 0%, 2%, 4%, 6%, 8%
percentages of wrongly labelled data (15-client setting).
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Figure 9: Test accuracy of global model for
0%, 2%, 4%, 6%, 8% percentages of wrongly labelled
data (4-client setting).

creases after 20 communication rounds. The global model is
more over-fitted with a larger percentage of wrongly labeled
data. This result provides an engineering insight in FL that
the over-fitting of the global model could result from some
wrongly labeled data in the local datasets. It also motivates
the study of mitigating label noise in FL (Li et al. 2021a).
Negative linear trend by label noise. In Figure 10, all three
algorithms show a negative linear relation between the test
accuracy of the global model and the proportion of wrongly
labeled data. This is consistent with our theoretical analysis.

Discussions
In this section, we discuss the limitation and potential appli-
cation of our work.
Improving theoretical bounds: We prove a linear upper
bound for the generalization error, and the bound is consis-
tent with numerical results. However, the upper bound can
be loose. One can provide a lower bound or improve the
upper bound by making more restrictive assumptions. For
example, one can consider a regression task with MSE loss
function that provides nicer theoretical properties (Damian,
Ma, and Lee 2021).
More comprehensive experiments: Our experiments use a
small number of clients, which applies to cross-silo FL. In
future research, we plan to study the impact of label noise
with a larger number of clients (e.g., as in cross-device FL).
Application: Our results potentially serve as “domain
knowledge” to improve FL algorithm design. Our work
could also be used in designing incentive mechanisms in FL
systems (Huang et al. 2022). In particular, the qualitative re-
lation in this paper helps model the performance of global
model under label noise.
Methodology: The emergence of large machine learning
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Figure 10: Test accuracy of global model by different FL
algorithms under different label error rates.

models has shifted the nature of AI research from an en-
gineering science (iteratively improving models) to a natu-
ral science (probing capabilities of the models we designed)
(Kambhampati 2022). Researchers have been proposing
hundreds of new models/algorithms for different AI prob-
lems. However, more must be done to understand how and
why a proposed model/algorithm performs in a certain way.
We must build theories based on observation and experi-
ments to understand these artificial black boxes. In this way,
we can transform AI research from engineering alchemy
to white-box chemistry. Our work follows this scientific
paradigm shift and conducts a case study for different FL
models under label noise.

Concluding Remarks
This paper takes the first step to quantify the impact of la-
bel noise on the global model in FL. The critical challenge
is that we have little knowledge of the underlying informa-
tion related to local data distributions and we do not have
an explicit expression of the outcome of an FL algorithm.
We show with both empirical evidence and theoretical proof
that 1) label noise linearly degrades the global model’s per-
formance in FL; 2) label noise slows down the convergence
of the global model; 3) label noise induces overfitting to the
global model. Our results could provide insights into the de-
sign of a noise-robust algorithm and the design of an incen-
tive mechanism.
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Appendix I
In Federated Learning, the “non-IID” issue is defined as
the statistical difference or statistical dependence of differ-
ent local datasets from different clients (Kairouz et al. 2021;
Zhu et al. 2021). In this work, we consider that for different
clients i and j, the distributions πi, πj of their local datasets
are different

πi ̸= πj

There are further two major types of non-IID: feature dis-
tribution skew and label distribution skew.

• For label distribution skew, all clients share the condi-
tional probability πi(x|y), that is,

πi(x|y) = πj(x|y),∀i, j ∈ [1, 2, . . . , N ],∀(x, y) ∈ Rdx+dy

while clients have different label distributions πi(y).
• For feature distribution skew, clients share the same con-

ditional probability πi(y|x) while clients have different
feature distributions πi(x).

Appendix II
The ReLU network is a powerful prototype model among
various types of neural network for its successful perfor-
mance in different fields, including image classification and
natural language processing (Zheng et al. 2019). In this
work, we study ReLU network as a sub-case in generaliza-
tion error analysis.

We represent a L-layer neural network as a map f :
θ 7→ f(·; θ) where θ denotes the weight of the network
and f(·; θ) : x 7→ f(x; θ) is a function that maps an input
x ∈ RdX to an output y ∈ RdY of the network.

Denote the width of the l-th layer as dl where 1 ≤ l ≤ L
and let d0 = dx+1, dL+1 = dY , i.e. there are dl nodes in the
l-th layer. Here we simplify the notation by converting the
affine map to a linear one: identify x ∈ Rdx with (x, 1) ∈
Rdx+1 (Weinan et al. 2020).

Definition 9 (Rectified linear unit). The rectified linear unit
function is defined to be

σ : R→ R≥0, σ(x) = max(0, x) (14)

Definition 10 (Rectifier activation function). By an abuse of
notation, we define the rectifier activation function by apply-
ing the rectified linear unit function element-wise

σ : Rd → Rd
≥0, σ


x1

...
xd


 =

max(0, x1)
...

max(0, xd)

 (15)

The k-th entry of output f(x; θ) of a L-layer ReLU net-
work is (Zheng et al. 2019; Weinan et al. 2020)

fk(x; θ) =

dL∑
iL=1

θL(iL, k)σ

 dL−1∑
iL−1=1

θ(iL−1, iL)σ

∑
iL−2

· · ·σ

(
d1∑

i1=1

θ1(i1, i2)σ

(
d0∑

i0=1

θ0(i0, i1)xi0

))
=

∑
(i0,...,iL)

θL(iL, k) ·
L∏

l=1

θl(il−1, il) ·
L∏

l=1

1
{
glil(θ, x) > 0

}
· xi0

(16)

where parameter θl(il, il+1) refers to the weight of the edge
connecting the il-th node in layer l and the il+1-th node in
layer l + 1; glil denotes the output of il-th node in layer l.

Appendix III
Definition 11 (Cross-entropy loss). Given a neural net-
work f , an input vector x, and the output vector y =
Softmax(f(x)), we define the cross-entropy loss as

−
∑
i

yi log

(
exp(fi(x))∑
j exp(fj(x))

)
(17)

where subscript i denotes the i-th entry of a vector.

Proof of Theorem 3. Without loss of generality, we prove
the theorem given that we use a neural network as our classi-
fier. By Lemma 4, we expand the formula of generalization
error as follows

G(W ) =
∣∣L(W )− L†(W )

∣∣
=

∣∣∣∣∣
N∑

k=1

nk

n

C∑
i=1

∫
X
fi(x) (dPrπk

(x, y)− dPrµ(x, y))

∣∣∣∣∣
by Assumption 2

=

∣∣∣∣∣
N∑

k=1

nk

n
EX

[
C∑
i=1

fi(X) (Prπk
(Y = i|X)− Prµ(Y = i|X))

]∣∣∣∣∣
≤

N∑
k=1

nk

n
EX

[
C∑
i=1

fi(X) |Prπk
(Y = i|X)− Prµ(Y = i|X)|

]

≤
N∑

k=1

nk

n
Ω · EX

[
C∑
i=1

|Prπk
(y = i|X)− Prµ(y = i|X)|

]
(18)

Theorem 12 (Growth of path-norm proxy (Weinan et al.
2020, Corollary 5)). Consider an arbitrarily wide L-layer
ReLU neural network. If the network’s weight evolves un-
der continuous gradient flow dynamics, then the network’s
path-norm increases at most polynomially

∥f(·; θ(t))∥pnp ≤
(
C0 +

√
R(f(·; θ(t = 0)))t1/2

)L+1

(19)
where θ(t) denotes the weight of the network at time t, C0 is
a constant and R is the expectation of a sufficiently smooth
loss function ℓ

R(θ; f) =
∫
Rdx+dy

ℓ(f(x; θ), y)P(dx⊗ dy) (20)
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Proof sketch of Proposition 7. This proof assumes the
gradient-flow evolution and an arbitrarily wide neural
network based on the proofs in (Weinan et al. 2020).

We first consider an FL setting. Let θ(i)(tk) denote the
collection of all the parameters of client i’s neural network
uploaded to the central server at the k-th communication
round before FL aggregation. Let θ(i)j (tk) denote the collec-
tion of j-th layer parameters of client i’s neural network up-
loaded to the central server at the k-th communication round
before FL aggregation. Let θ̃j(tk) denote the collection j-
th layer parameters of the global neural network at the k-th
communication round after FL aggregation, i.e.

θ̃j(tk) =aggregation(θ
(1)
j (tk), . . . , θ

(N)
j (tk))

=ϕ(θ
(1)
j (tk), . . . , θ

(N)
j (tk))

Define the risk functional of client i:

R(i)(·) :=
∫
X

∫
Y
ℓ(f(x; ·), y)dπi

Pr(x, y)

where X denotes the feature/input space and Y denotes the
label/output space.

We first consider the path-norm evolution during local up-
date of client i. Let E denote the time range of local update
under gradient flow and tk = tk+1 + E,∀k ≤ R. By Theo-
rem 12, we have

∥θ(i)j (tk+1)∥L2(πj+1⊗πj) ≤∥θ̃j(tk)∥L2(πj+1⊗πj)

+

√
R(i)

(
θ̃(tk)

)
E1/2

Without loss of generality, consider the FedAvg aggregation
scheme, i.e. for 1 ≤ k ≤ R,

θ̃(tk) =ϕ(θ(1)(tk), . . . , θ
(N)(tk))

=
1

N

N∑
i=1

θ(i)(tk)

Let Ωj denote the index space of the j-th layer of a neural
network, and θ

(i)
j (wj+1, wj , tk+1) denote the weight of the

neural network given indices wj+1, wj , then

∥θ̃j(tk+1)∥L2(πj+1⊗πj)

=

∥∥∥∥∥ 1

N

N∑
i=1

θ
(i)
j (tk+1)

∥∥∥∥∥
L2(πj+1⊗πj)

=

∫
Ωj+1×Ωj

(
1

N

N∑
i=1

θ
(i)
j (wj+1, wj , tk+1)

)2

dwj+1wj

≤ 1

N

N∑
i=1

∥θ(i)j (tk+1)∥L2(πj+1⊗πj)

≤ 1

N

N∑
i=1

(
∥θ̃j(tk)∥L2(πj+1⊗πj) +

√
R(i)

(
θ̃(tk)

)
E1/2

)

≤∥θ̃j(tk)∥L2(πj+1⊗πj) + max
1≤i≤N

√
R(i)

(
θ̃(tk)

)
E1/2

≤∥θ̃j(tk)∥L2(πj+1⊗πj) + max
1≤i≤N

√
R(i)

(
θ̃(t0)

)
E1/2

≤∥θ̃j(t0)∥L2(πj+1⊗πj) + (k + 1) max
1≤i≤N

√
R(i)

(
θ̃(t0)

)
E1/2

Now we have an upper bound of the j-th layer parameters,
we can then derive the upper bound of the path-norm. By
Lemma 4.6 in (Weinan et al. 2020),

∥f∥pnp ≤

(
C ′ + k max

1≤i≤N

√
R(i)

(
θ̃(t0)

)
E1/2

)L+1

where C ′ is a constant and C ′ ≥ ∥θ̃j(t0)∥L2(πj+1⊗πj) for
all 1 ≤ j ≤ L.

Note that the above result also applies for SCAFFOLD
with a new risk functional of client i:

R(i)(·; f) =
∫
Rdx+dy

(ℓ(f(x; ·), y)+⟨·, ci⟩)P(dx⊗dy)+M

where ci denotes the client control variate and M is a con-
stant. We introduce M to ensure that the risk functional is
always non-negative. The gradient-flow dynamics does not
depend on the choice of M .

Next, we consider a decentralized learning setting. Here
we take the multi-consensus stochastic variance reduced ex-
tragradient algorithm as an example (Luo and Ye 2022). The
local update analysis is similar to FL. As for the aggregation
step in decentralized optimization, the communication step
is typically written as the matrix multiplication

θ̃(tk) = Wθ(tk)

where θ denotes the matrix which collects all clients’ param-
eter vector θ(i). We assume that

• Wij ̸= 0 if client i and j can exchange information;
• W is a symmetric matrix;
• 0 ⪯W ⪯ I,W1 = 1,null(I −W ) = span(1).

Let θ(i)(tk) denote the collection of all the parameters of
client i’s neural network uploaded to the central server at the
k-th communication round before decentralized communi-
cation. Let θ(i)j (tk) denote the collection of j-th layer pa-
rameters of client i’s neural network uploaded to the central
server at the k-th communication round before decentralized
communication. Let θ̃(i)j (tk) denote the collection j-th layer
parameters of client i’s neural network at the k-th commu-
nication round after the decentralized communication.

By Lemma 2 in (Liu and Morse 2011) and Lemma 2.1 in
(Luo and Ye 2022), we obtain a bound on the mixing rate of
parameters,∥∥∥∥∥θ̃(i)j (tk)−

1

N

N∑
I=1

θ
(I)
j (tk)

∥∥∥∥∥
L2(πj+1⊗πj)

≤λ2(W )

∥∥∥∥∥θ(i)j (tk)−
1

N

N∑
I=1

θ
(I)
j (tk)

∥∥∥∥∥
L2(πj+1⊗πj)
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where λ2(W ) denotes the second largest eigenvalue of W .
Then

∥θ̃(i)j (tk+1)∥L2(πj+1⊗πj)

≤(1 + 2λ2(W ))∥θ̃j(tk)∥L2(πj+1⊗πj)

(1 + λ2(W )) max
1≤i≤N

√
R(i)

(
θ̃(tk)

)
E1/2

≤(1 + 2λ2(W ))∥θ̃j(tk)∥L2(πj+1⊗πj)

(1 + λ2(W )) max
1≤i≤N

√
R(i)

(
θ̃(t0)

)
E1/2

≤(1 + 2λ2(W ))k+1∥θ̃j(t0)∥L2(πj+1⊗πj)

+
1 + λ2(W )

2λ2(W )
((1 + 2λ2(W ))k+1 − 1) max

1≤i≤N

√
R(i)

(
θ̃(t0)

)
E1/2

again, by Lemma 4.6 in (Weinan et al. 2020), we have

∥f∥pnp = O

(
eC

′′k max
1≤i≤N

√
R(i)

(
θ̃(t0)

)
E1/2

)L+1
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