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Abstract

This paper proposes a whole-body human pose estimation
method by investigating the mixed characteristics of dense
and coarse keypoints. Unlike the conventional pose estima-
tion method, a whole-body pose estimation method needs to
locate keypoints on the body as well as the face, hands, and
feet. The fixed Gaussian sigma has been used in a ground-
truth heatmap. Thus, whole-body pose estimation methods
suffer from scale differences for each body part (i.e., different
labeling noise for each body part). To address this problem,
we propose a Keypoint-wise Adaptive Loss (KAL) method
to learn the adaptive factors between body parts (i.e., more
densely annotated face and hand keypoints than body and
foot keypoints). To improve localization accuracy of dense
keypoints, we further introduce Foreground-Weight Adaptive
Heatmap Regression (FWAHR) method to KAL, that results
in introduction of Foreground-Weight Keypoint-wise Adap-
tive Loss (FoWKAL). The experimental results reveal that the
FoWKAL method significantly outperforms previous meth-
ods, especially on the keypoints of the body and foot, and it
also achieves state-of-the-art results on COCO-WholeBody
dataset.

Introduction
Human pose estimation aims to localize body keypoints in
images and videos. Human pose estimation plays a critical
role in visual understanding tasks and has many applica-
tions, such as human action recognition (Yan, Xiong, and
Lin 2018), motion capture (Willett et al. 2020), and vir-
tual reality (Weng, Curless, and Kemelmacher-Shlizerman
2019). Recently, beyond over-the-body pose estimation, a
challening whole-body human pose estimation has been
studied due to the fine-grained keypoints, complex pose, oc-
clusion, and scale variation. Whole-body pose estimation si-
multaneously localizes 133 keypoints on the body as well as
on the face, hands, and feet (i.e., 17 keypoints on the body, 6
on the foot, 68 on the face, and 42 on the hand). These key-
points, called COCO-WholeBody dataset (Jin et al. 2020),
have different scales even for the same person (i.e., different
labeling noise for each body part). For example, the hand
and face have a much smaller scale than the body and foot.
With these characteristics, the keypoints on the face and
hands are dense, whereas the keypoints on the body and feet

Figure 1: Comparison of a heatmap covering adjacent key-
points. (a) GT coordinates of whole-body keypoints. (b) GT
heatmap covering adjacent dense keypoints. (c) Heatmap
that rarely covers adjacent coarse keypoints.

are coarse. In the viewpoint in heatmap regression, we ob-
served a heatmap covering adjacent keypoints in dense key-
points as in Fig 1. It is a natural way to devise a method that
considers the relationship between dense and coarse key-
points. Recent whole-body pose estimation researches have
mostly focused on fine-grained keypoints (Jin et al. 2020;
Zauss, Kreiss, and Alahi 2021; Zeng et al. 2022).

We investigate a heatmap regression method focusing
on keypoints with different densities. Heatmap regression
methods perform better than keypoint regression methods
in detecting body keypoints (Toshev and Szegedy 2014;
Newell, Yang, and Deng 2016; Chen et al. 2018; Xiao, Wu,
and Wei 2018; Sun et al. 2019; Cheng et al. 2020). However,
different scales of whole-body keypoints have rarely been
studied at the heatmap level. Simply replacing the Mean
Squared Error (MSE) loss with the Adpative Wing (AWing)
loss (Wang, Bo, and Fuxin 2019) is not a proper solution
because we observed estimation performance degradation,
except in the face and hand keypoints.

Based on this observation, we propose KAL, which learns
adaptive factors to balance heatmap loss, such as MSE and
AWing, according to density. The Keypoint-wise Adaptive
Factor (KAF) quantifies the density of keypoints and refers
to the labeling noise, i.e., annotation variance (Jin et al.
2020), inherent ambiguities (He et al. 2019; Choi et al. 2019;
Luo et al. 2021). The proposed method applies more weight
to foreground pixels than the background pixels if annota-
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tion variance is low while the same weight is applied to ev-
ery pixel in the heatmap when annotation variance is not
low.

After balancing heatmap loss between body part, how-
ever, we observed that background pixels in heatmap may
aggravate the performance of dense keypoints. We introduce
FWAHR method to improve localization accuracy.

The key contributions of this paper can be summarized as
follows:

• We propose KAL to handle with the scale difference, am-
biguity and labeling noise of keypoints, and this method
experimentally shows the performance improvement of
the coarse keypoints.

• To improve localization accuracy, we propose FWAHR
to constrain loss weights to foreground area, which lead
model to focus on foreground pixels. The proposed
FWAHR induces significant performance enhancement
for the dense keypoints over KAL.

• Through extensive experiments, it is shown that we
achieve state-of-the-art performance with the proposed
FoWKAL method.

Related Work
Human Pose Estimation. Conventional human pose esti-
mation aims to localize 17 body keypoints, such as in the
COCO keypoint challenge (Lin et al. 2014). In pose esti-
mation, top-down and bottom-up approaches have primarily
been studied (Dang et al. 2019; Chen, Tian, and He 2020).
The bottom-up approach detects all keypoints simultane-
ously in the input image and groups the keypoints by per-
son (Newell, Huang, and Deng 2017; Cao et al. 2017; Ko-
cabas, Karagoz, and Akbas 2018; Cheng et al. 2020; Luo
et al. 2021). Thus, it is faster than the top-down approach
for multi-person pose estimation in general.

The bottom-up approach suffers from the various scales
of people, whereas the top-down method is more effective
and has higher accuracy for single-person pose estimation
(Newell, Yang, and Deng 2016; Chen et al. 2018; Xiao, Wu,
and Wei 2018; Sun et al. 2019; Huang et al. 2020). First, a
human detector detects all human bounding boxes in the in-
put image (Girshick 2015; Cai and Vasconcelos 2018; Chen
et al. 2019; Tian et al. 2019). Then, a pose estimator detects
17 body keypoints of a person in a bounding box. It crops
and scales for each normalized single-person pose; thus, the
pose estimator has limitations on latency-constrained real-
world systems, but it does not suffer from the scale variety
of people.

Whole-body Human Pose Estimation. Recently known
as a challenging task, whole-body dataset (Jin et al. 2020)
have extended COCO dataset (Lin et al. 2014). This dataset
makes whole-body pose estimation difficult due to scale
variation, complex poses, mixed fine-/coarse-grained key-
points, and occlusion, requiring higher localization accu-
racy. Recent whole-body pose estimation researches have
mostly focused on fine-grained keypoints. As a top-down
approach, ZoomNet (Jin et al. 2020) is a single network con-
sisting of multiple branches to zoom-in on fine-grained key-

points. TCFormer (Zeng et al. 2022) introduces transformer-
based architecture to focus on various sizes of body part
rather than background in the input image. By clustering
tokens, TCFormer generates not fixed but dynamic vision
tokens. As a result, its capability to estimate fine-grained
keypoints is improved. In a bottom-up approach, keypoint
communities (Zauss, Kreiss, and Alahi 2021) introduces a
skeleton-based graph to assign different weights for each
body part. Unlike previous methods that assign the same
weight to each keypoint, the method based on the graph
community concept effectively predicts fine-grained key-
points and various poses by quantifying the connection
strength of adjacent parts, outperforming previous methods.

Loss functions for Whole-body Human Pose Estimation.
Convolutional neural network based heatmap regression has
been widely studied for keypoint localization in human
pose estimation. Unlike the keypoint coordinate (Toshev and
Szegedy 2014; Carreira et al. 2016), the keypoint heatmap
represents probability with being joints as two-dimensional
(2D) Gaussian kernels with a fixed sigma (Tompson et al.
2014; Wei et al. 2016; Newell, Yang, and Deng 2016; Chen
et al. 2018), and therefore, research has been mainly recon-
structing high-resolution heatmaps (Tompson et al. 2015;
Newell, Yang, and Deng 2016; Chen et al. 2018; Xiao, Wu,
and Wei 2018; Sun et al. 2019). However, loss functions
have rarely been studied in human pose estimation. The
MSE loss has primarily been used.

We use the keypoint heatmap to focus on the two cru-
cial problems in the previous whole-body pose estimation
methods. i) The keypoint heatmap has an imbalance problem
between foreground and background pixels, degrading the
model performance (i.e., foreground pixels are dominated
by background pixels). ii) Whole-body keypoints are mixed
dense/coarse but are encoded into the heatmap as a 2D Gaus-
sian distribution with the same sigma σ. Consequently, using
only the MSE loss, which applies the same weight the loss to
all pixels, creates a problem. This paper proposes KAL for
whole-body human pose estimation inspired by AWing loss
(Wang, Bo, and Fuxin 2019) to address the above problems.
The proposed method, inspired by the loss balanced strat-
egy in (Kendall, Gal, and Cipolla 2018), learns to balance
between each body part to cope with the labeling variance
and learns to focus more on the foreground pixels than the
background pixels in the heatmap.

Method
This section introduces KAL, which follows the top-down
pipeline (Zhang et al. 2020). As a two-stage method, it con-
sists of a human detector and pose estimator. The proposed
method is corresponding to a pose estimator. In addition,
KAL is based on the HRNet (Sun et al. 2019) backbone net-
work and Dark (Zhang et al. 2020) as the data processing
method. KAL predicts all keypoints for the single-person
image. Given an image I of size W × H × 3, a pose es-
timator predicts the heatmap P of size W ′ ×H ′ ×K. After
postprocessing, it detects all keypoint K from a heatmap.
To improve accuracy by learning with KAL, we added a
head network to predict the keypoint-wise adaptive factors
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Figure 2: A human pose estimator architecture of the proposed KAL/FoWKAL method.

λ ∈ [0, 1]K . The network architecture of KAL is depicted in
Fig. 2.

Heatmap Regression
In heatmap regression, the ground-truth heatmap is the 2D
Gaussian distribution centered at the labeled keypoint coor-
dinate that has the fixed sigma σ. In the experiments, we
used σ=2. Suppose Pk ∈ RW ′×H′

denotes the ground-
truth heatmap where k is the index of keypoint, k ∈
{1, ...,K}. pi,jk denotes the ground-truth probability of the
corresponding (i, j) pixel being kth keypoint, where i ∈
{1, ...,W ′} and j ∈ {1, ...,H ′}. We simply denote the pixel
value as p instead of pi,jk . Commonly, heatmap regression
uses the MSE as the loss function, formulated as follows:

LMSE(P, P̂ ) =
1

K

K∑
k=1

H′∑
j=1

W ′∑
i=1

(pi,jk − p̂i,jk )2, (1)

where P̂k is the predicted heatmap of the kth keypoint.

Motivation. Now, we focus on the fundamental problem,
the imbalance between foreground and background pixels
in the heatmap. The MSE loss applies equal weight at the
pixel level. However, the background pixels dominate the
foreground pixels on the heatmap, and the prediction accu-
racy suffers. The proposed alternative is to consider a loss
function that applies more weight on the foreground pixels
than the background pixels in the heatmap to improve the
accuracy of locating the keypoint, inspired by AWing loss
(Wang, Bo, and Fuxin 2019). The AWing loss has larger gra-
dient than MSE loss when the foreground error is small. In
other cases, AWing loss has characteristics similar to MSE
loss. The AWing loss is defined as follows:

AWing(p, p̂) =

{
w ln(1 + |p−p̂

ϵ |α−p) if |p− p̂| < θ,

A|p− p̂| − C otherwise,
(2)

where p and p̂ indicate the ground-truth and predicted
pixel values in the heatmap, w, θ, ϵ, α are hyper param-
eter with positive values, A=w(1/(1 + (θ/ϵ)α−p))(α −
p)((θ/ϵ)(α−p−1))(1/ϵ), and C = (θA−w ln(1+(θ/ϵ)α−p))
are responsible for making the loss function continuous at

the point where |p− p̂| = θ. In the experiments, we followed
the parameter settings used by (Wang, Bo, and Fuxin 2019).
We replaced the MSE loss with the AWing loss, formulated
as follows:

LAWing(P, P̂ ) =
1

K

K∑
k=1

H′∑
j=1

W ′∑
i=1

AWing(pi,jk , p̂i,jk ). (3)

However, as introduced in the experimental section, perfor-
mance does not improve except in the face and hands.

Heuristic Loss. Inspired by the AWing loss results on the
COCO-WholeBody dataset (Jin et al. 2020), we assume that
the fine-grained body parts have the advantage of focusing
on the foreground for accurate predictions, but the coarse
body parts suffer from label ambiguities (He et al. 2019;
Choi et al. 2019; Luo et al. 2021). Therefore, we designed
a heuristic loss function, where the parts of the body and
feet adopt the MSE loss, and the parts of the face and hands
adopt the AWing loss. Thus, the performances are improved
in most body parts. The second problem is to use the same
sigma σ for all keypoints (Wei et al. 2016; Newell, Yang,
and Deng 2016; Chen et al. 2018). In this case, instead of
adjusting the sigma σ for each body part, the heuristic loss
function indirectly adjusts the sigma σ by training the model
to focus differently on the foreground or background in the
heatmap. The loss function of two parts (i.e., the body and
feet, the face and hands), defined as follows:

Lbf (P, P̂ ) =
1

Nbf

∑
k∈bodykpt∪footkpt

H′∑
j=1

W ′∑
i=1

(pi,jk − p̂i,jk )2,

Lfh(P, P̂ ) =
1

Nfh

∑
k∈facekpt∪handkpt

H′∑
j=1

W ′∑
i=1

AWing(pi,jk , p̂i,jk ),

(4)
where Nbf =Nbody +Nfoot, Nfh =Nface +Nhand, Npart

denotes the number of keypoints of a body part (e.g.,
Nbody = 17), part ∈ {body, face, foot, hand} indicates
each body part name, and partkpt denotes a set of keypoints
of the corresponding body part. Now, the heuristic loss func-
tion using Eq. 4, is defined as follows:

Lheuristic(P, P̂ ) = λfhLbf (P, P̂ ) + λbfLfh(P, P̂ ), (5)
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Method whole-body body foot face hand
AP AR AP AP AP AP

Bottom-up methods:
AE (Newell, Huang, and Deng 2017) 27.4 35.0 40.5 7.7 47.7 34.1
OpenPose (Cao et al. 2017) 33.8 44.9 56.3 53.2 48.2 19.8
Keypoint Communities (Zauss, Kreiss, and Alahi 2021) 60.4 - 69.6 63.4 85.0 52.9

Top-down methods:
ZoomNet† (Jin et al. 2020) 54.1 65.8 74.3 79.8 62.3 40.1
HRNet-w32 (Sun et al. 2019) 55.3 62.6 70.0 56.7 63.7 47.3
TCFormer (Zeng et al. 2022) 57.2 67.8 69.1 69.8 64.9 53.5
HRNet-w32+DARK (Zhang et al. 2020) 58.2 67.1 69.4 56.5 73.6 50.3
HRNet-w32+DARK+FoWKAL (Ours) 61.6 71.1 72.7 74.2 73.8 53.5

Table 1: Performance comparisons with the state-of-the-art bottom-up/top-down methods. The results are reported on the
COCO-WholeBody V1.0 dataset (Jin et al. 2020). HRNet-w32 and HRNet-w32+DARK results are from MMPose (Contribu-
tors 2020). ZoomNet† is trained with the COCO-WholeBody V0.5 training set.

where λfh =Nfh/N and λbf =Nbf/N are balancing fac-
tors because the number of keypoints for each body part
is different, and N =

∑
part Npart. The above heuristic loss

function aims to accurately estimate fine-grained keypoints
by focusing on the foreground in the heatmap.

Keypoint-wise Adaptive Loss. In the previous section,
we empirically chose a loss function between the MSE loss
and AWing loss for each body part. To cope with variant
poses, we introduce a Keypoint-wise Adaptive Factor (KAF)
λ ∈ [0, 1]K and control the extent of the focus on the fore-
ground in the heatmap. We define the adaptive loss function
at each keypoint as follows:

LAdaptive(Pk, P̂k) =

λkLAWing(Pk, P̂k) + (1− λk)LMSE(Pk, P̂k),
(6)

where λk indicates a KAF of the kth keypoint heatmap,
which is the output of added head network. In addition, in
the context of relationships between body parts, we add a
regularization term of the KAF in the loss. The regulariza-
tion term is defined as:

Lreg(λ) =
∑
part

{ 1

Npart

∑
k∈partkpt

(λk − λ̄part)
2}

=
∑
part

V ar(λpart),
(7)

where V ar(λpart) indicates the variance of λpart, and λ̄part

indicates the mean of the KAF in a body part (i.e., λ̄part =
1

Npart

∑
k∈partkpt

λk). We propose KAL, written as follows:

LKAL(P, P̂ )

=
∑
part

{ 1

Npart

∑
k∈partkpt

LAdaptive(Pk, P̂k)}+ Lreg(λ).

(8)

The effect of this factor is discussed in the experimental sec-
tion.

Weighted Foreground Heatmap Loss. We have exper-
imentally learned that background pixels in heatmap may
aggravate the performance of dense keypoints; because all
pixles in heatmap are assigned by equal weight. In (Wang,
Bo, and Fuxin 2019), loss map mask focuses on foreground
pixels, which leads model to improve localization accuracy.
In (Luo et al. 2021), WAHR balances the fore-background
samples.

To apply similar idea, we introduce Foreground-Weight
Adaptive Heatmap Regression (FWAHR) and constrain loss
weight to foreground pixels for improvement accuracy of lo-
calization. FWAHR down-weight the loss on the background
pixels and the loss of easier samples on the foreground pix-
els; therefore lead the model to focus on relatively harder
samples on the foreground pixels in the heatmap. FWAHR
is defined as follows:

W (p, p̂) =

{
pγ · |1− p̂|+ |p̂| · (1− pγ) if p̂ ≥ 2−

1
γ ,

τp otherwise,

(9)
where 2−

1
γ is threshold of soft boundary to determine that a

samples becomes a positive or negative sample and τ is the
hyper-parameter that down-weight the sample that is likely
to be on background pixels. We use τ = 0.01, and follow the
parameter settings used by (Luo et al. 2021). When KAL and
FWAHR are used together, it is called Foreground-Weight
Keypoint-wise Adaptive Loss (FoWKAL). The weighted
and adaptive Loss is defined as follows to apply FWAHR
to KAL:

LWAdaptive(Pk, P̂k)

= λkLWAWing(Pk, P̂k) + (1− λk)LWMSE(Pk, P̂k)

= λk

H′∑
j=1

W ′∑
i=1

W (pi,jk , p̂i,jk )AWing(pi,jk , p̂i,jk )

+ (1− λk)

H′∑
j=1

W ′∑
i=1

W (pi,jk , p̂i,jk )(pi,jk − p̂i,jk )2.

(10)
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Method MSE AWing KAL FWAHR whole-body AP body AP foot AP face AP hand AP
(a)

√
58.2 69.4 56.5 73.6 50.3

(b)
√

57.9 67.6 52.4 76.8 50.9
(c)

√ √
58.7 70.2 58.6 76.5 48.4

(d)
√

58.4 71.8 73.4 69.6 45.8
(e)

√ √ √
61.2 71.1 69.0 76.4 53.2

(f)
√ √

61.6 72.7 74.2 73.8 53.5

Table 2: Ablation study on Mean Squared Error/Adaptive Wing loss, Keypoint-wise Adaptive Loss (KAL), and Foreground-
Weight Adaptive Heatmap Regression (FWAHR), respectively. Method (a) is the baseline with MSE loss, method (b) is the
AWing loss, method (c) is the heuristic loss, method (d) is the KAL, method (e) is the heuristic loss and the FWAHR, and
method (f) is the Foreground-Weight Keypoint-wise Adaptive Loss (FoWKAL).

Figure 3: Qualitative results with FoWKAL from the COCO-WholeBody V1.0 validation set (Jin et al. 2020).

Finally, by modifying Eq. (8), FoWKAL is defined as fol-
lows:

LFoWKAL(P, P̂ )

=
∑
part

{ 1

Npart

∑
k∈partkpt

LWAdaptive(Pk, P̂k)}+ Lreg(λ).

(11)

Experiments and Analysis
Datasets and Evaluation metric
We conducted extensive experiments on the COCO-
WholeBody V1.0 dataset (Jin et al. 2020), including 118K
training images and 5K validation images. This dataset con-
tains annotations of 17 body, 6 foot, 68 face, and 42 hand
images for the human pose. The standard evaluation metrics
for whole-body human pose estimation use Average Preci-
sion (AP) and Average Recall (AR) based on object keypoint
similarity (Lin et al. 2014; Jin et al. 2020).

Implementation Details
Training and Testing. The proposed method consists of
HRNet-W32 (Sun et al. 2019) as the backbone network and
Dark (Zhang et al. 2020) as the data processing method. We
train the backbone networks initialized by the model pre-
trained for the ImageNet classification (Deng et al. 2009).
For training, we follow most of the default settings of train-
ing and evaluation, as in MMPose (Contributors 2020).
Specifically, the input size of the network is 256×198, and
the network output is a 64×48 heatmap. Data augmentation
includes random rotation ([-40◦, 40◦]), random scale ([0.5,
1.5]), random flip, and half body augmentation (Wang et al.

2018). We used the Adam optimizer (Kingma and Ba 2014)
and choose the linear warm-up strategy. The warm-up it-
eration is set to 500, and the warm-up ratio is 0.001. The
base learning rate is 5e-4 and drops to 5e-5 and 5e-6 at the
170th and 200th epochs, respectively. The proposed method
is trained on 8 GPUs with a batch size of 32 in each GPU,
and the training process is terminated within 210 epochs.

For test purposes, we follow the process proposed in pre-
vious work (Sun et al. 2019; Xiao, Wu, and Wei 2018;
Newell, Yang, and Deng 2016; Chen et al. 2018) to create
the heatmap by averaging the heatmaps of the original and
flipped images.

Results on the COCO-WholeBody V1.0 dataset
The proposed FoWKAL method achieves the best perfor-
mance compared to previous state-of-the-art methods. The
results are presented in Table 1. Compared to top-down
methods like the proposed method, the FoWKAL method
outperformed the previous best results (TCFormer) by 4.4%
for whole-body AP (Zeng et al. 2022).

Moreover, compared to the bottom-up methods, the
FoWKAL method exceeds the previous state-of-the-art re-
sults (Keypoint Communities) by 1.2% of the whole-body
AP. The AP of the body and foot results significantly ex-
ceed 3.1% and 10.8%, respectively, outperforming Keypoint
Communities (Zauss, Kreiss, and Alahi 2021). The qualita-
tive results are depicted in Fig. 3.

Ablation Study
We conduct comparative experiments to validate the im-
provements by the MSE/AWing loss, KAL, and FWAHR.

5



(a) Baseline

(b) The proposed FoWKAL

Figure 4: Qualitative comparison results between FoWKAL and the baseline corresponding to Method (a) in Table 2. (a) Results
on the HRNet (Sun et al. 2019) and Dark (Zhang et al. 2020) with MSE loss. (b) Results on the proposed FoWKAL method.
Note the difference denoted by the red arrow.

The results are presented in Table 2 and are evaluated on
COCO-WholeBody V1.0 validation set (Jin et al. 2020).

Dense/Coarse keypoints The baseline is Method (a) with
the MSE loss function and equally weight the loss at the
pixel level. To cope with dense keypoints, we replaced the
MSE loss with AWing loss (Wang, Bo, and Fuxin 2019). In
the Method (b) results, AWing loss improves AP values of
face and hand. Focusing on the foreground pixel errors is ef-
fective on dense keypoints, whereas performance for coarse
keypoints is degraded. Inspired by the results of Method
(b), Method (c) is a heuristic loss corresponding to Eq. (5).
Heuristic loss improves the performance of each body part
AP and improves performance by 0.5% of the whole-body
AP over the baseline. These results imply that keypoints
from different body parts and scales have different labeling
noise.

When the heuristic loss is replaced with the KAL, Method
(d) improves performance of coarse keypoints, and espe-
cially the foot AP by 14.8%; however, dense keypoints are
degraded. We suppose that KAL balances the heatmap loss
between each body part, but suffers from dominant back-
ground pixels in a heatmap.

Effect of FWAHR on dense keypoints To explore the ef-
fect of FWAHR, we apply FWAHR to the heuristic loss and
KAL. In both Method (e) and (f), significantly improve per-

formance by 2.5% and 3.2% of whole-body AP, respectively,
proving the effectiveness of the FWAHR. Notably, Method
(f) that adds FWAHR to the KAL, significantly improves
performance of dense keypoints and the results of the AP for
the face and hands exceeded 4.2% and 7.7%, respectively;
FoWKAL achieves state-of-the-art performance compared
with previous methods. Figure 4 depicts the qualitative com-
parison of Methods (a) and (f), corresponding to the baseline
and FoWKAL, respectively. As presented in Fig. 5, KAF
have the critical role of adaptively focusing on body parts in
the training process to control the extent of the focus on the
foreground in the heatmap. The KAF makes the loss in the
face close to the AWing loss. Otherwise, the loss is close to
the MSE loss.

Method Whole-body AP
Heuristic + WAHR 59.6

Heuristic + FWAHR 61.2
KAL + WAHR 59.5

KAL + FWAHR 61.6

Table 3: Comparison of Foreground-Weight Adaptive
Heatmap Regression (FWAHR) and WAHR (Luo et al.
2021) with heuristic or Keypoint-wise Adaptive Loss
(KAL).
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Figure 5: Comparison of Keypoint-wise Adaptive Factors (KAF) that change as learning progresses on samples. Min-Max
normalization relatively scales of KAF at each pose for visualization. A whiter point color is closer to MSE, and a bluer point
color is closer to the AWing loss (Wang, Bo, and Fuxin 2019).

We empirically analyze the effect of the FWAHR and
WAHR (Luo et al. 2021), and the results are listed in Table 3.
KAL balances the heatmap loss between body part; however,
by assigning equal weight to all pixels in the heatmap, local-
ization accuracy result in an inferior performance. There-
fore, we constrain the loss weight to focus on foreground
pixels. We conducted comparison experiments in both the
heuristic and KAL methods. In Table 2, i) Heuristic and
FWAHR methods correspond to Method (e), and ii) KAL
and FWAHR correspond to Method (f). In Table 3, both i)
and ii), performance improved by 1.6% and 2.1%, respec-
tively, proving the effect of the FWAHR.

Conclusion
We propose a Foreground-Weight Keypoint-wise Adaptive
Loss (FoWKAL) method to estimate dense and coarse
whole-body keypoints. The KAL method learns Keypoint-
wise Adaptive Factors (KAF) and balances the loss to
deal with the different scale of whole-body parts. As a
result, KAL improves estimation performance for coarse
keypoints. Furthermore, we propose a Foreground-Weight

Adaptive Heatmap Regression (FWAHR) method to im-
prove localization accuracy and FWAHR significantly im-
proves performance of dense keypoints. Experiments show
that the KAF plays a key role in heatmap regression for de-
tecting whole-body keypoints with different labeling noise.
It is shown that the proposed method achieves state-of-the-
art performance on COCO-WholeBody dataset.
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