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Abstract
With the rise of AI systems in real-world applications comes
the need for reliable and trustworthy AI. An essential as-
pect of this are explainable AI systems. However, there is no
agreed standard on how explainable AI systems should be
assessed. Inspired by the Turing test, we introduce a human-
centric assessment framework where a leading domain expert
accepts or rejects the solutions of an AI system and another
domain expert. By comparing the acceptance rates of pro-
vided solutions, we can assess how the AI system performs
compared to the domain expert, and whether the AI system’s
explanations (if provided) are human-understandable. This
setup—comparable to the Turing test—can serve as a frame-
work for a wide range of human-centric AI system assess-
ments. We demonstrate this by presenting two instantiations:
(1) an assessment that measures the classification accuracy of
a system with the option to incorporate label uncertainties; (2)
an assessment where the usefulness of provided explanations
is determined in a human-centric manner.

Introduction
AI systems have matured and are on the rise to become
an integral part of the real world in applications that span
across our entire society. The performance of such AI sys-
tems is mostly validated in terms of accuracy against a la-
beled ground-truth dataset. Even if this is often appropriate,
it poses the challenge that such validation frameworks can-
not be transferred directly to validate AI systems that pro-
vide solutions in terms of a prediction and an explanation,
or that exceed human performance. The problem of how to
validate explainability methods is vividly discussed and in-
vestigated, leading to diverse frameworks—for instance, the
concepts of meta-predictor (Fel et al. 2021) and simulatabil-
ity (Doshi-Velez and Kim 2017) are only proxies that cannot
measure an AI system’s performance in comparison to a hu-
man expert.

We describe a generic framework to assess AI systems in
a blind experiment, where three domain experts interact in
a collaborative environment. One domain expert is a human
lead expert, who picks the tasks to be solved and accepts or
rejects the provided solutions. Next, each task is solved by a
domain expert, either a human or an AI system, whereby the
leading expert has no information about who solved the task
nor that an AI system might have solved it. Our framework

assesses the performance of the AI system compared to the
human expert, by estimating the chances that the lead expert
accepts a solution provided by either the human or the AI
system.

Consider, for example, the assessment of medical labo-
ratories: a leading laboratory (maybe hired by some author-
ity) sends test specimens (the tasks) anonymously to another
laboratory. After analyzing the specimens, the laboratory re-
turns the results (solutions). The leading laboratory evalu-
ates the results knowing the sent specimens and reports the
acceptance rate of the assessment. What the leading labo-
ratory does not know is that the specimens are analyzed by
either a human expert or fully automatized by a machine so
that the acceptance rate refers to the human or the system.
By comparing the acceptance rate of the human with the sys-
tem, the quality of the system is assessed. This setup allows
an unbiased validation of whether or not it is acceptable to
have a machine perform the analysis in place of a human.

In the following, we will describe the proposed assess-
ment framework in detail. Next, to demonstrate the general-
izability of this framework, we show how the ordinary mea-
sure of classification accuracy emerges from a specific in-
stantiation of the framework and allows us to measure label
uncertainty. Additionally, we describe an instantiation to as-
sess the usefulness of AI explainability methods by design-
ing a setup where the lead expert requires an explanation to
make a proper assessment in a short amount of time—thus,
this setup measures the usability of an explanation method.

The outline of the paper is as follows: The next section
defines and discusses the assessment framework and intro-
duces two instantiations as examples. Then, we discuss re-
lated work and finish with a conclusion and an outlook.

Assessment Framework
The proposed assessment framework can measure how well
an AI system performs a task compared to a human expert.
First, we give a formal definition followed by a discussion.
Second, we outline two instantiations of the framework.

Formal Definition
Consider the situation in Figure 1. Our assessment frame-
work consists of three domain experts (or groups of experts):
a Lead expert (L), an Expert (E), and an AI System (S).
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Figure 1: Illustration of the proposed assessment framework.
The test is performed in a specific domain with a specified
language. The tasks of the leading expert are randomly as-
signed to either the AI or the expert. Based on the received
solution, the lead expert evaluates it. We assess the AI by
calculating the acceptance rates.

The lead expert L assigns a task via a well-defined com-
munication channel to one of the colleagues (either E or S).
The assignment is made at random and L does not know
who will solve the task, nor that there are different solvers
involved. After the assigned colleague solves the task, the
solution is returned to L via a well-defined communication
channel. Then, L decides whether to accept or reject the so-
lution based on specified approval guidelines.1 Thus, L as-
sesses (evaluates) the solution for the given task, which does
not necessarily imply that L has to solve the task again. To
compute the acceptance rate, the decision whether the solu-
tion is accepted is mapped to the colleague who solved the
task (the solver does not know whether their solution was
accepted). By repeating the test for several tasks of the do-
main, we can estimate the acceptance rates for E and S.
Definition 0.1. For a system S : T → Σ, an expert
E : T → Σ, and a lead expert L : T × Σ → {0, 1}, the
assessment consists of determining the empirical probabili-
ties that solutions σ ∈ Σ for tasks τ ∈ T that are randomly
drawn by the lead expert L and are randomly solved by the
system S or the expert E are accepted by the lead expert L:

pS =
1

#TS

∑
τ∈TS

L (τ, S(τ)) ,

pE =
1

#TE

∑
τ∈TE

L (τ, E(τ)) ,

where the individual task sets TS and TE are subsets of
1Acceptance means conformity with the approval guidelines.

Thus, a rejection does not imply that the individual parts of a solu-
tion (for instance, the prediction and the explanation) are incorrect.

the task set T and pS is the empirical probability that a so-
lution provided by the system S will be accepted by the lead
expert L (analogous interpretation for pE).

The following outcomes are possible: (1) The AI system
performs worse than the expert if pS ≪ pE ; (2) The AI sys-
tem behaves like the expert if pS ≈ pE ; (3) The AI system
exhibits superhuman abilities if pS ≫ pE .

Note that the assessment of a medical lab mentioned in
the introduction can be mapped to the assessment framework
definition. Moreover, the framework is unbiased and human-
centric. Unbiased in the sense that the lead expert does not
know that there is an AI involved and, thus, evaluates so-
lutions from a human-centric perspective. Additionally, by
always involving a human and an AI for task solving, it is
required to define how to solve a task and how to communi-
cate with L, which makes the task description and solution
communication human-centric as well. For explainable AI,
this postulate immediately disqualifies explanation methods
that produce explanations that are not suited for human in-
terpretation. Therefore, with a common acceptance of our
framework, future explainable AI research can consider how
human-centric an explanation method is during its early con-
ception. This is desired as explanations are generated for the
sole purpose of being useful for humans. Finally, because the
framework always provides a human baseline performance
through E, it can quantify superhuman performance.

Assumptions, Remarks, and Discussion
Domain, language, tasks, and solutions: The test is fixed
to a certain domain with experts, and the communication
is limited to understanding tasks (τ ∈ T) and solutions
(σ ∈ Σ). These communications require the languages to
be well-defined so that all three parties can understand tasks
and solutions, and that E and S can formulate solutions in an
unimpeded manner. Namely, E and S can communicate well
with L using the same languages, and L cannot determine
which party is providing a solution based on the language
used. At the same time, this ensures that a human can under-
stand the explanation produced by S.

Additionally, for each domain, the task must be well-
defined so that the criteria for its completion are unambigu-
ous. In other words, it is obvious what has to be done. For
example, in object recognition, annotation guidelines clearly
specify what an object is, how to annotate it, and, thus, what
solutions are expected. Task definition becomes especially
important in the context of explainable AI when the solvers
have to return an explanation alongside the prediction be-
cause it requires defining the expected explanation (e. g.,
what should be highlighted by a saliency map). Moreover,
these definitions set the rules for how E should solve a task
to control human subjectiveness. Finally, note the solution
language might contain a word for “no solution derived” to
ensure a solution is always returned even if the AI system
encounters errors or the expert cannot provide a solution.

Lead expert: The test requires that the lead expert is in-
terested in assessing the solvers by evaluating the solutions
following the approval guidelines. If this is not the case, the
lead expert could accept any solution, which would lead
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Figure 2: Example of a generated colorblind image (right) of
a MNIST image (left) according to plate 4 of Ishihara (Ishi-
hara 1972). People with red-green color deficit would have
trouble reading it.

to the logical consequence that S and E perform equally
well because no domain-specific task-solving abilities are
required to provide acceptable solutions.

Importantly, it is not required that L can solve tasks (con-
trarily to E and S). However, L must be able to evaluate
task-solution pairs even if it is time-consuming, otherwise,
the assessment (or validation) of any system is impossible.
Consider AlphaFold (Jumper et al. 2021): protein structures
predicted by the model must be evaluated by experiments to
confirm correctness. Though time-consuming (but possible),
it was used to validate the outstanding model performance.

The approval guidelines are of utmost importance for the
evaluation of solutions. Similar to the precise task descrip-
tion (which is related to annotation guidelines), the approval
guidelines must specify as precisely as possible how a so-
lution must be evaluated. Every undefined aspect will be
impacted by the subjectiveness of the domain lead expert,
which can lead to intended or unintended biased evalua-
tions.2

Assessment of Classification Accuracy
This example instantiation shows the generalizability of the
framework: it can measure the classification accuracy (with
label uncertainty) of an AI system S on a given test set
(xi, yi) ∈ D, where xi is an input annotated with the class
label yi. In the context of the framework, the inputs xi rep-
resent the task set T, and the possible class labels yi form
the solution set Σ so that the framework assesses the pro-
vided class labels of inputs. Additionally, since each xi was
annotated by a human expert, it is feasible to assume that
the corresponding label yi represents the solution of the ex-
pert E: E(xi) = yi. Now, we can define the classification
accuracy of a system S with respect to the lead expert L by

accL(S) =
pS
pE

.

If we further assume that the lead expert L accepts the so-
lution σi for a task τi = xi if and only if σi = yi, then the

2Tasks with known solutions can be injected in the assessment
framework to control the compliance with the approval rules of L
and task solving rules of E.

probability pE to accept solutions provided by the lead ex-
pert E becomes 1.0, and the classification accuracy with re-
spect to the lead expert accL(S) becomes the canonical clas-
sification accuracy acc(S) used to assess the performance of
a system S:

accL(S) =
pS
pE

= pS =
1

#TS

∑
τ∈TS

L (τ, S(τ))

=
1

#D

#D∑
i=1

[S(xi) = yi] = acc(S).

If the acceptance criteria of the lead expert L would not be
the class label yi of the test input xi but really an acceptance
evaluation of a human expert, then we would naturally iden-
tify labels where human experts disagree so that the label
uncertainty can be assessed.

Assessment of the Usefulness of Image
Classification Explanations

Several researchers investigated the usefulness of explana-
tions in different experimental settings (see the related work
section). To validate whether explanations are useful and
help users to assess the correctness of a prediction, we pro-
pose an experiment based on the assessment framework with
lead experts that have a slight color vision deficit such that
they need explanations to assess the predictions for col-
orblind images derived from MNIST (LeCun, Cortes, and
Burges 1998), see Figure 2, in a short amount of time. Here,
the controlled independent variable is whether an explana-
tion is presented. The dependent variable is the acceptance
rate for a given amount of approval time. We determine the
usefulness of human-understandable explanations by com-
puting the changes in the acceptance rate between the as-
sessment with and without an explanation. This experiment
is a suitable instantiation of the framework as it only requires
that experts know the Arabic numerals and aptly uses the
color perception abilities of humans to assess the usefulness
of explainability methods with a reduced experimental bias.

In this instantiation, the AI system S is a neural network
with an explainer (e. g., an occlusion map by Zeiler and Fer-
gus 2014) that classifies the MNIST colorblind images. Sim-
ilar to S, the expert E has to provide a prediction and an ex-
planation that highlights where in the image the numeral can
be found. To fulfill this task, E must have normal color vi-
sion. In contrast, the lead expert L must have a slight color
deficit such that it is difficult for L to see the numeral in
a short amount of time—Ishihara (Ishihara 1972) specified
that humans with normal color vision must see the numeral
within 3 s, whereas humans with a slight color deficit need
long exposures to see the numeral. The approval criterion is
that L must only accept solutions if L can see the predicted
number in the input, which is possible for L to evaluate be-
cause L is chosen to have only a slight color deficit.

In the first run of the experiment, solutions without expla-
nations are presented. Because L has a color deficit, the ac-
ceptance rates for a short decision time will be low for both E
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and S.3 In the second run, each solution includes an explana-
tion. If the explanation is human-understandable, it will help
L see the numeral so that the acceptance rates for a short de-
cision time will increase. Therefore, by computing the dif-
ferences between the run with and without explanation for
a short decision time the usefulness of an explanation can
be assessed because without explanations, L needs a longer
time to evaluate task-solution pairs (L cannot circumvent the
need for explanations to achieve short decision times since
L needs long exposures to solve the tasks). Moreover, by
comparing the acceptance rates, the explanation quality of
S compared to E can be assessed, and, by repeating the ex-
periment with different explanation methods, the quality of
explanation methods can be quantified.

Related Work
The assessment framework we propose builds on the idea of
the Feigenbaum test (Feigenbaum 2003), which is a refine-
ment of the Turing test (Turing 1950), where the test is set
up as a game that is played between experts of a particu-
lar (narrow) domain. In this game, a judging domain expert
poses, for instance, problems, questions, or theories, which
are passed on via two channels to either a computer or an-
other domain expert. The judging domain expert does not
know which channel connects to the computer. Depending
on the channel, either the computer or the other domain
expert replies with an answer. The test asks the following
question: by evaluating the received answer, can the domain
expert determine which channel connects to the computer?
Similar to the Turing test, the Feigenbaum test is a behav-
ioral test that tries to “test the facet of quality of reason-
ing” (Feigenbaum 2003, p. 36). For a computer program to
pass the test, it must be able to simulate human intelligent
behavior, which is why the test is sometimes inappropriately
taken as a test of human intelligence. We follow the idea
of performing an experiment between experts of a certain
domain but modify it by proposing a framework where the
chances of accepting a solution (answer) from the machine
and the human expert are measured. Consequently, the pro-
posed framework is not a test that can be passed, but rather
an assessment of solutions for domain-specific tasks so that
a computer’s performance can be quantified in comparison
with human performance.

To quantify whether or not explanations are human-like,
Biessmann and Treu (Biessmann and Treu 2021) created a
Turing test for transparency to evaluate whether humans can
identify who generated an explanation (an AI or a human).
Since they draw inspiration from the Turing test, this concept
is similar to our framework. However, our goal is to assesses
any performance of an AI system and a human expert—not
only how human-like explanations are. Furthermore, their
framework requires the interrogator to be informed about the
presence of an AI and a human so that the interrogator may
be biased against the AI (Dietvorst, Simmons, and Massey
2015). Our proposal avoids this potential bias.

3Given a decision time, each accepted solution where the deci-
sion took longer will be counted as rejection internally.

Other concepts to evaluate explanations is simulatability
(Doshi-Velez and Kim 2017, given the input and the cor-
responding explanation, the model output has to be pre-
dicted), and the Meta-predictor (Fel et al. 2021, after a train-
ing phase, humans have to predict the model output only by
seeing the input). Hase and Bansal (Hase and Bansal 2020)
performed controlled experiments to measure simulatability,
which is conceptually similar to the work of Fel et al. (Fel
et al. 2021). Based on the results, in both experiments, the
authors concluded that some explainability methods help
users. Similar to our proposed framework, both require two
trials (with and without explanation) to measure the useful-
ness of an explainability method. But, with both concepts
it is not possible to analyze whether a model is judged to
be bad due to superhuman model capabilities, since the con-
cepts are limited to the mental abilities of the human subjects
who have to simulate the model behavior.

Alufaisan et al. (Alufaisan et al. 2021) also performed an
experiment to evaluate the impact of explanations to help
users perform a prediction and concluded that explanations
do not positively impact prediction accuracy of humans.
However, this result could be affected by uncontrolled con-
founders like asking the users for a prediction and giving
them the freedom to ignore the AI outputs, which is resolved
in our framework.

Conclusion and Outlook
The growing field of explainable AI still has no unified eval-
uation framework for explainability methods. Based on the
contributions of several other frameworks and their experi-
ments, we proposed an assessment framework that combines
several of these approaches and addresses their weaknesses.
Notably, the proposed framework is human-centric and able
to identify models with superhuman performances because
it always compares the AI performance with a human base-
line performance. To demonstrate the generalizability of the
framework, we have described two instantiations: the first
measures classification accuracy, and the second measures
the usefulness of human understandable explanations. The
next steps will be the implementation of the second experi-
ment.
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