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Abstract

Diabetic retinopathy is a dangerous pathology that can ul-
timately lead to permanent blindness. Recent studies have
proved the feasibility of automatic diagnosis systems, sup-
porting specialists, from eye fundus images, based on deep
networks. A careful image equalization turned out to be im-
portant in obtaining good performances. However, state-of-
the-art algorithms for image equalization require expensive
parameter tuning which may limit the adoption of such sup-
port systems in practice. In this paper, we propose a learning-
based approach to adaptively select the right equalization pa-
rameters for each image. This approach allows significant re-
duction in the inference time without necessarily sacrificing
the accuracy. A preliminary empirical evaluation confirms the
advantages of the proposed method.

Introduction
Diabetic retinopathy is a dangerous pathology that can ul-
timately lead to permanent blindness (Cheung and Wong
2008; Stitt et al. 2016). Hence, a timely diagnosis is fun-
damental to enable an appropriate treatment and limit the
consequences of the pathology. The problem of design-
ing a learning based system for automatic retinopathy de-
tection supporting the specialist dates back at least to
(Sinthanayothin et al. 1999) (see also (Gupta and Chhikara
2018) for an historical account). However, traditional ma-
chine learning system suffers from the drawback of requir-
ing a careful feature engineering phase that usually results
in difficult to compute features. More recently, deep learn-
ing methodologies have been used to face this problem
(Abràmoff et al. 2016; Badar, Haris, and Fatima 2020; Pour
et al. 2020; Pratt et al. 2016). One aspect that turned out
to be important in obtaining good performances with deep-
learning methods is of image equalization (Pour et al. 2020).
Roughly speaking, image equalization consists of making
the distribution of the pixel intensity somehow uniform, re-
sulting in images with improved contrast (see (Zuiderveld
1994) and the references therein). Figure 1 shows a com-
parison between a raw eye fundus image and its equalized
counterpart. As it is possible to see, in the equalized image,
many fine-grained details are made evident revealing the
presence of the retinopathy (e.g., the highlighted lesions).
State-of-the-art methods for image equalization, including

Figure 1: Image equalization. On the left, a raw eye fundus
image of a subject suffering from a severe diabetic retinopa-
thy. On the right, the equalized image where there are visible
and highlighted in the white edged boxes many of the typi-
cal lesions caused by the pathology.

the popular Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) (Akram et al. 2014; Zuiderveld 1994), re-
quire a careful parameter tuning in order to obtain an ac-
ceptable contrast. Unfortunately, automating this tuning is
difficult due to the fact that there are no commonly accepted
objective functions for evaluating the choice of the parame-
ters and the existing proposals are non-convex; which makes
their optimization computationally intractable. Furthermore,
the existing proposals are related to some notion of image
quality, rather than to the accuracy of the inference that
can be made a posteriori on the equalized image. Hence,
carefully selecting the parameters for an appropriate image
equalization is a difficult and time consuming process (Cam-
pos et al. 2019; Reddy Eswar 2019; Fawzi, Achuthan, and
Belaton 2021; Joseph et al. 2017; Min et al. 2013).

Contributions. Inspired by the recent work on dynamic
resolution networks (Zhu et al. 2021), in this work we pro-
pose a novel approach to image equalization in the context of
diabetic retinopathy detection. The proposed learning-based
method consists of a pair of networks, that given an image
determines the appropriate parameters for the equalization
step and, after the equalization, predicts its label respec-
tively. The networks are trained in an end-to-end fashion as
described in Section 2. The main advantage of this method
is that of substantially reducing the overall inference time of
the system while retaining near optimal accuracy. This in-
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Figure 2: Proposed method. The overall system is composed of a series of two networks, a ResNet and an EfficientNet. After
the system is trained in an end-to-end fashion, a raw image is fed to ResNet which selects the CL for the CLAHE. Second,
the image is equalized with the tuned CLAHE method; finally, the processed image is fed into EfficientNet for retionapthy
classification. The green bounding boxes reported on the equalized images have an illustrative purpose and are not applied in
practice: they illustrates the many finer details highlighted by the equalization process.

creases the practical usability of such systems in real-world
scenarios. Additionally, while many classical cost functions
for pre-processing algorithms are not directly related to the
accuracy, our proposal leads to an integrated solution that
is optimized for the predictions. As a result, the proposed
method, can even obtains better performances than expen-
sive grid-search procedures; especially in the small data-
regime. We illustrate our proposal in the context of CLAHE.
In Section 3 we report an experimental evaluation on real-
world data and finally draw the conclusions in Section 4.

Methodology
Our method takes inspiration from the dynamic resolution
network developed in (Zhu et al. 2021) and the fact that an
accurate pre-processing tunes the image equalization algo-
rithm optimally for each image. We illustrate the proposal
in the context of a specific image equalization method, the
popular CLAHE algorithm (Zuiderveld 1994). CLAHE re-
quires the user to specify two parameters: the tile size and
the clip limit, denoted by TS and CL respectively. Moti-
vated by the fact that the tile size plays a minor role on the
equalization performances in comparison to the clip limit
(Reddy Eswar 2019; Fawzi, Achuthan, and Belaton 2021;
Joseph et al. 2017; Min et al. 2013) and to favor simplicity,
we limit the tuning to CL and keep fixed TS.

As shown in Figure 2, the proposed method consists
mainly of two components. The first one is the CL value
predictor, implemented as a ResNet network; its goal given
an image as input is to find the better clip limit value for pro-
cessing that image with CLAHE. More specifically, given a
grid of possible values for CL, this network outputs a prob-
ability distribution over such grid. Next, the image is pro-
cessed with the CL value corresponding to the mode of this
distribution. The second is a classification network imple-
mented as via EfficientNet which takes the equalized image,
with the selected CL, and predicts its class.

As for the training, both networks are trained in an end-
to-end fashion. Due to the hard predictions of the first net-
work (i.e. a given CL value chosen among a pre-defined
grid), its output layer turn out to be non-differentiable; which
makes the pair of networks not trainable via the standard
back-propagation algorithm. To overcome this issue, only
for training the networks, we replace the output layer of the
first model with a Gumbel soft-max layer. Specifically, if the
predicted probabilities for the possible N values of CL are

denoted with p = (p1, . . . , pN ), the Gumbel-soft-max out-
put is computed as

yCL = I

(
argmax
j∈[N ]

log2(pj) + gj

)
, (1)

where the function I : [N ] → {0, 1}N provides the one-hot
encoding of a given integer in [N ] := {1, . . . , N} as a binary
vector in {0, 1}N , and each gj := − log2(log2(uj)) with
uj uniformly distributed in (0, 1). Notice that in this case
yCL is a binary vector, with a single 1 corresponding to the
chosen CL value. Since the argmaxj function introduces a
non-differentiability, at training time we replace its Gumbel
soft-max activation

yCL,j =
exp(log2(pj) + gj)/τ∑N
j=1 exp(log2(pj) + gj)/τ

. (2)

We make the following observations. First, yCL,j is now a
real-valued vector whose mode some-how denote the pre-
ferred CL value. The Gumbel soft-max activation of 2 is
parametrized by the scalar τ > 0: small value of τ makes
2 a very good approximation of 1 with equality at the limit
τ → 0; on the other hand τ → ∞ leads to a poor approxima-
tion with the function begin almost uniform. The choice of
τ determines a trade-off between the approaximation qual-
ity and the numerical stability of the resulting gradients (see
(Zhu et al. 2021) and the reference therein for further details
on this trick). This layer is differentiable and then allows for
a joint training of both network via back-propagation. The
overall system, on the other hand, is trained to minimize the
cross-entropy loss. We notice that one drawback of this pro-
posal is an increasing training time w.r.t. a single network;
this is however balanced by a substantial improvement in the
prediction time, which is the goal of this paper.

Experiments
We compare the performance of our method (Predicted-
CLAHE) against that of a network where images are not
equalized (No-CLAHE) and a network where each image
is equalized through a costly tuning of CLAHE (Tuned-
CLAHE). The former is included only to provide a base-
line for the inference time and further highlighting the bene-
fits of an suitable pre-processing in the detection of diabetic
retinopathy. The latter, for each image, performs a costly

2



Method DS Tr DS Ts AUC Se Sp Ac Avg. Time (s)
No-CLAHE M2 I 0.752 0.523 0.981 0.810 0.799
Tuned-CLAHE M2 I 0.816 0.679 0.954 0.859 20.656
Predicted-CLAHE M2 I 0.788 0.580 0.997 0.842 1.753

No-CLAHE I M2 0.656 0.751 0.562 0.702 1.359
Tuned-CLAHE I M2 0.755 0.892 0.619 0.721 38.844
Predicted-CLAHE I M2 0.878 0.726 0.849 0.869 1.879

Table 1: Experimental evaluation. DS Tr and DS Ts denote the training and the test dataset respectively, with M2 for
MESSIDOR–2 and I for IDRiD. AUC denotes for Area Under Curve. Se stands for sensitivity. Sp stands for specifity. Ac
stands for accuracy. Avg. Time is the average inference time across the predictions made on the test set.

grid-search over {2, 4, 6, . . . , 32}× {1, 2, 3, . . . , 30} for the
pair (TS,CL) to optimize the entropy objective proposed in
(Min et al. 2013). For each model, we measure several ac-
curacy metrics and the average prediction time on the test
data.

Datasets description. We used two real-world datasets,
MESSIDOR-2 (Decencière et al. 2014) and IDRiD (Porwal
et al. 2018). MESSIDOR-2 contains 1744 images while the
IDRiD 516 testing images. Both datasets are made of im-
ages at different resolutions ranging from 1440× 960 up to
4288 × 2848. Images in both datasets are classified accord-
ing to the International Diabetic Retinopathy Scale into five
classes that range from 0 up to 4 with 0 denoting healthy
subjects and the higher levels denoting advanced stages of
retinopathy.

Training details. First, all the images have been cropped
to remove the black bands on the edges. Then, for computa-
tional purposes, we resized all the images to the resolution of
456× 456 as also done in previous work (Pour et al. 2020).
Finally, we reduced the problem to binary classification by
merging the classes 0 and 1 and the classes 2, 3 and 4. This is
justified by the fact that level 1 denotes a fundamentally be-
nign stage of the pathology and do not require any treatment,
similarly to level 0. Moreover, a stage 1 diabetic retinopathy
does not usually present symptoms at level of the eye fun-
dus; which makes this class essentially equivalent to class 0.
On the other hand, levels 2, 3 and 4 all require medical at-
tention and a form of treatment. As classification networks,
in all the experiments we resorted to a pre-trained Efficient-
Net b5. During training, we performed data augmentation
with random horizontal and vertical flipping. Optimization
is performed using SGD with batch-size 1 and learning rate
is 0.01. Each model is trained for a maximum of 200 epochs
and the drop-out rate is set to 0.1. On the other hand, the CL
predictor has been designed to decide among thirty possi-
ble CL values in {1, 2, . . . , 30} (this range is the same sug-
gested in the seminal work (Zuiderveld 1994)) and has been
implemented as a four layers ResNet. The TS is kept fixed to
8 in order to limit the complexity of the prediction network.
Moreover, it has been observed that the TS plays a minor
role w.r.t. CL (e.g.(Min et al. 2013; Joseph et al. 2017));
this is also supported in our experiments. Models are imple-
mented in PyTorch and training is performed on a 16 GB
NVIDIA Tesla P100 GPU accessed via Google Colab.

Results. Table 1 shows the experimental results. The first
three rows report the performances of the considered meth-
ods when they are trained on the MESSIDOR-2 and tested
on IDRiD; the last three rows instead of referring to the
converse case. For the first setting, our proposal Predicted-
CLAHE strikes a very good trade-off among predictive per-
formances and inference time. As for the accuracy for ex-
ample, it gets closer to the more expensive Tuned-CLAHE
while predicting at a speed which is one order of magni-
tude faster. In the second case, instead of Predicted-CLAHE
obtains superior predictive performances while retaining a
small inference time. The large performance gap may be ex-
plained by the fact that, differently from Tuned-CLAHE,
the equalization made by Predicted-CLAHE is optimized
for the predictions. Indeed, the objective proposed in (Min
et al. 2013) is related to the entropy of the equalized image.
Specifically, the image pixel intensities are quantized into an
histogram with a specified number of bins. The histogram
is normalized into a (discrete) probability distribution and
its entropy is calculated. The observation is that an image
with a poor contrast will have most of its pixel intensities
concentrated around a certain value (e.g. very bright image),
this will result in a very low entropy. On the other hand, a
well contrasted image will result in an almost flat histogram
with maximal entropy. Notice however, that a flat histogram
image, may have some of its details not suitably highlighted.
Authors in (Min et al. 2013), observe that a subjectively good
contrast can be obtained at the point where the entropy curve
reached by varying CL and TS has maximal curvature. We
notice, that while this approach is beneficial to improve the
perceived quality of the image, it may lead to sub-optimal
predictive performance, as the right level of contrast may be
different from the one that is acceptable for a human eye.
To further illustrate this phenomenon lets consider Figure
3. The image on the left, is an eye fundus image without
equalization that is miss-classified by Tuned-CLAHE and
correctly classified by our method. The central and the right
images have been equalized with the grid search procedure
of Tuned-CLAHE and the predicted CL from Predicted-
CLAHE respectively. As it is possible to note, the central
image, has a higher perceived quality than the one on the
right which appears to be over-contrasted. However, in the
right image, due to the high level of contrast many fine de-
tails are more evident, including the typical aneurysms of
the diabetic rethinopathy. This is beneficial to the prediction
task and indeed allows the correct classification.
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Figure 3: Limitations of entropy based criteria. On the left, a raw eye fundus image of a subject suffering from a severe dia-
betic retinopathy. In the center, the equalized image with CL = 2 as tuned by Tuned-CLAHE. On the right, the equalized image
with CL = 19 as predicted by our method Predicted-CLAHE. Notice that Tuned-CLAHE, differently from Predicted-CLAHE,
miss-classifies this image as that of an healthy subject. This comparison shows that while the first approach is beneficial to
improve the perceived quality of the image, it may lead to sub-optimal predictive performance, since it doesn’t sufficiently
highlight the finer details (e.g. the many micro-aneurysms present in the eye fundus of this patient) that are important to detect
the pathology.

Conclusions and future work
We have proposed a novel learning based approach to the
problem of appropriately tuning the equalization parame-
ters. The approach relies on a pair of networks that are
trained in an end-to-end fashion. The proposed method
strikes a trade-off between accurate predictions and reduced
inference time. Promising preliminary experimental results
support the validity of our proposal. We believe that these
ideas can be further elaborated and ultimately lead to a bet-
ter user experience of automatic diagnosis support systems.
Besides, we believe this methodology is general enough to
be applied also to other pre-processing mechanisms. As fu-
ture work it would be interesting to extend the approach to
the prediction of other equalization parameter, TS for ex-
ample. It would be also interesting to evaluate the trade-off
between the pre-processing network complexity, the accu-
racy and the resulting inference time; this will sheds light on
the limiting performances of the proposed approach. Finally,
a more extensive and comprehensive experimental evalua-
tion, also including other equalization algorithms can serve
a more solid benchmark for the proposed approach.
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