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Abstract

Synthetic data is proliferating and powering many advances
in machine learning. However, it is not always clear if syn-
thetic labels are perceptually sensible to humans. The web
provides us with a platform to take a step towards address-
ing this question from a human-centric perspective, through
online elicitation. We design a series of elicitation interfaces,
which we release as HILL MixE Suite, and recruit 159
participants, to provide perceptual judgments over the kinds
of synthetic data constructed during mixup training: a power-
ful regularizer shown to improve model robustness, general-
ization, and calibration. We find that human perception does
not consistently align with the labels traditionally used for
synthetic points and begin to demonstrate the applicability of
these findings to potentially increase the reliability of down-
stream models. We release all elicited judgments in a new
data hub we call H-M1i x.

Introduction

Synthetic data is proliferating, fueled by increasingly power-
ful generative models, e.g. (Goodfellow et al. 2014; Dhari-
wal and Nichol 2021). These data are not only consumed
directly by people (e.g., users of the web) — but, as training
predictive models on synthetic data has been found to unlock
tremendous advances in machine learning (ML) (Silver et al.
2016; de Melo et al. 2022; Emam et al. 2021; Jordon et al.
2022), synthetic data is increasingly employed to train algo-
rithms serving as engines of many applications humans may
interact with. However, it is not always clear whether human
perceptual judgments of synthetically-generated data match
the generative process used to create them.

A human-centric stance on synthetically-generated data
may be important for many reasons. Since synthetic ex-
amples increasingly form the crux of training data, it is
worth considering whether such labels reflect human be-
liefs. Aligning networks to match humans’ perceptual infer-
ences could be a way to further ensure model reliability and
trustworthiness (Nanda et al. 2021; Chen et al. 2022; Fel
et al. 2022). If these data are not aligned with human per-
cepts, then performance potentially could be improved by
altering such signals to better match the richness of human
judgments: this has proven effective when aligning mod-
els with human probabilistic knowledge (Collins, Bhatt, and
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Figure 1: Overview of our framework. A) Synthetic data
generating process used in mixup; B) and C) depict elici-
tation settings: B) participants endorse a synthetic image to
match a label, C) participants infer the label for a synthetic
image.

Weller 2022; Sanders et al. 2022). More broadly, connec-
tions to cognitive science can improve our understanding
of algorithms for generative models (de Melo et al. 2022;
Chandra et al. 2022; Marjieh et al. 2022). Additionally,
an improper understanding of how synthetic data is gener-
ated could leave users open to manipulation or gamifica-
tion (Brundage et al. 2018). We argue that one ought to verify
whether synthetic data aligns with human perception, and if
not, explore whether training with human-relabeled exam-
ples improves model performance.

In this work, we take a step in this direction by focusing
on mixup (Zhang et al. 2018): a method whereby a model
is trained only on synthetic, linear combinations of conven-
tional training examples. We focus on mixup for three key
reasons. First, the generative process for synthetic mixup
examples is very simple, and provides us with direct ac-
cess to the “ground truth” generative model parameters;
that is, we have precise control over the mixing coefficient
used to create the mixed image. This enables us to compare
any discrepancy between human perceptual judgments and
this parameter explicitly. A generative model like a gener-
ative adversarial network (GAN) (Goodfellow et al. 2014)
or a diffusion model (Ho, Jain, and Abbeel 2020) does not
permit these kinds of precise comparisons as easily. Sec-
ond, despite this simplicity, mixup is a powerful and pop-
ular training-time method that has been leveraged to ad-
dress model fairness (Chuang and Mroueh 2020), improve
model calibration (Thulasidasan et al. 2019; Zhang et al.



2022), and increase model robustness via regularizing the
form of category boundaries learned implicitly (Zhang et al.
2020; Verma et al. 2022). mixup is frequently used as a
strong benchmark for many new data augmentation and reg-
ularization techniques (Hendrycks et al. 2019, 2022). Third,
prior work in human categorical perception — revealing that
humans show non-linear “warping” effects along category
boundaries (Harnad 2003; Folstein, Palmeri, and Gauthier
2013; Goldstone and Hendrickson 2010) — suggests that hu-
mans will differ in their percepts from the linear category
boundaries encouraged by mixup.

To that end, we consider whether mixup labels match hu-
man perception, and if not, how the labeling scheme can be
improved to better align with human intuition and poten-
tially enhance model performance. We focus on two flavors
of elicitation: 1) having participants “construct” a midpoint
between categories by selecting from a set of synthetic im-
ages, and 2) eliciting traces of humans’ broader category
boundary across a range of mixed images by having par-
ticipants directly intervene on the synthetic label. We de-
sign three online elicitation interfaces to address these ques-
tions, which we offer as The Human-in-the-Loop Mixup
Elicitation Suite (HILL MixE Suite). We collect judg-
ments from over 150 humans on these synthetically com-
bined images, which we release in a dataset we call “Human
Mixup” or H-Mix!. We then demonstrate one of the possi-
ble use cases of this data: as adjusted training data for deep
networks. We depict our general framework in Fig. 1. Our
data (H-Mix) and general elicitation paradigm (e.g., HILL
MixE Suite) could support a range of downstream ap-
plications: from serving as new training labels for machine
learning or benchmarking model alignment, to auditing syn-
thetic data, and informing cognitive science studies, among
others. We see our work as a step in the exciting direction of
a human-centric perspective on synthetic data which powers
many of the ML algorithms on the web.

Problem Formulation
Decoupling Data and Label Mixing in mixup

We first review mixup (Zhang et al. 2018) and explicate the
recipe by which synthetic examples are created. We em-
ploy the nomenclature and notation around “mixup poli-
cies” from (Liu et al. 2021b). We assume access to a finite
set of N samples {(x1,91), (x2,¥2, -, (xN,yN)}. mixup
training consists of constructing synthetic training examples
(Z,¢) via linear combinations of pairs of the training obser-
vations (z;,v;), (z;,y;) for i, j € [1, N], corresponding to
the following data and label mixing functions:

Data Mixing: f(xj,z;,Af) = Apxi+(1—=Ap)z; =2 (1)

Label Mixing: g(yi, yj, Ag) = Agyi + (1 = Ag)y; =9 (2)
where Ay and A, are defined as the data mixing coefficient
and label mixing coefficient, respectively. We refer to the
combined images x;,x; and their labels y;,y; as the end-
points. For a specified mixing coefficient A, we denote the

'All data, elicitation interfaces, and experiment code will be
included in our repository.

resultant image as . mixup typically assumes Ay = A,.
We instead decouple the data and label mixing functions to
permit a more general formulation where the data and label
mixing functions can have different coefficients.

Human-in-the-Loop mixup

Our decoupling allows us to probe whether human percepts
align with either the mixing policy over the observations (f)
or the targets (¢). Human alignment of these mixing policies
could be important for several reason. First, we may want
to understand how well the synthetic data used to power
many models deployed on the web matches human percep-
tual judgments, thus ensuring model trustworthiness. Sec-
ond, given that these policies do afford mixup downstream
niceties—such as improved generalization, robustness, and
calibration— we believe it is worth exploring whether modu-
lating such data to be more human-aligned can yield similar,
or better, performance boosts. We therefore pose two ques-
tions to separate groups of human participants to better elu-
cidate alignment of the mixup synthetic data construction:

RQ1: What z do participants believe matches a given g?

RQ2: Conditioned on Z, what do humans perceive as y?

We focus on the setting where we maintain the structural
form of f and g; that is, they are each parameterized by a
single mixing coefficient. We discuss alternative functional
forms which may more flexibly capture the richness of hu-
man percepts of these synthetically-constructed images in
the Appendix.

Selecting a Matching Midpoint (RQ1)

We first consider holding ¢ fixed and creating a
perceptually-aligned input. We liken this setting to coun-
terfactual data creation from (Kaushik, Hovy, and Lipton
2019). Such an approach will let us begin to study how hu-
mans perceive the data and labeling generative policies used
in mixup.

Problem Setting

In our set-up, we inform participants that they will observe
samples combined from particular categories y;, ;. We fix
the label mixing coefficient, A, (here, to 0.5 — but our proce-
dure could be extended to arbitrary mixing coefficients) and
ask participants to construct a viable & that would be per-
ceived as the A\, mixture of the categories. Ideally we may
want to see what kind of example the participant may select
from the full space of possible examples (in our case, im-
ages); for simplicity, we restrict that participants choose a
from a set of M pre-constructed linear interpolations which
we refer to as {Z;}17,, which we refer to as X . Each ;
is the result of executing f for a given A ;. Here, we consider
a sweep of over the mixing coefficients [0.0,0.1,...0.9, 1.0].
From their selected image, we can uncover how their percep-
tion of the data-generating process differs relative to what
was actually used to create said selected image.

Elicitation Paradigm

We design two means of eliciting people’s selection of a Z:



1. Interface 1 (Construct): participants use their key-
board to iterate over X, (ordered), where key presses
increment or decrement j by one such that Z; are cycled
through at increments of 0.1. One mixed example is dis-
played on the screen at a given time. Participants press
“Next” when they are happy with the selected ;.

2. Interface 2 (Select—-Shuffled): participants see all
T € Xz on the screen at once. Mixed examples are shuf-
fled and thus presented in an unordered fashion. Partici-
pants indicate their selection by clicking on the Z; they
think best matches A,.

Why do we consider both interfaces? We reason that the
first interface could be prone to ordering effects — an astute
participant could realize that they can count out where the
midpoint is located. This led us to design the second va-
riety (Select-Shuffled) wherein the participant sees
all images shuffled simultaneously. We hypothesize that
Construct could induce responses biased by the partic-
ipant’s starting position. To probe this, we run two sub-
variants wherein participants start from either Ay = 0.1 or
Ar=0.9.

fExample interfaces are depicted in the Appendix. As men-
tioned, participants are explicitly told the categories being
combined (y1, %) and are asked to indicate the image they
think that is most likely to be perceived as the 50/50 com-
bination of the mixed images by 100 other crowdsourced
workers. Such elicitation language is drawn from (Chung
et al. 2019), following a recommended practice in high-
fidelity human subject elicitation whereby participants are
asked to assume a third-person perspective when respond-
ing (Prelec 2004; Oakley and O’Hagan 2010).

Stimuli and Participants We focus on a random subset
of the CIFAR-10 test images, a dataset containing low-
resolution images drawn from ten categories of objects and
animals (e.g., truck, ship, cat, dog) (Krizhevsky et al. 2009).
We use the test set as this permits downstream comparisons
against CIFAR-10H: an expansive set of approximately 51
human annotators’ judgments about each example (Peter-
son et al. 2019; Battleday, Peterson, and Griffiths 2020).
From each each unique category combination (e.g., truck-
dog, ship-cat, cat-dog), we sample 6 random images from
each of the categories and linearly combine them in pixel-
space. We sample 249 such image pairings, and for each, we
sweep over the space of 11 mixing coefficients incrementing
by 0.1 between Ay = 0.0 and Ay = 1.0 (totalling 2739 syn-
thetically mixed images in total). We recruit a total of 70 par-
ticipants from Prolific (Palan and Schitter 2018) and hosted
on Pavlovia. 45 participants were allocated to Construct,
which was sub-divided into two conditions based on the
starting point of the selection: 23 participants started at the
Ar = 0.9 mixing coefficient, and 22 participants were as-
signed always starting at Ay = 0.1. The remaining 25 partic-
ipants were allocated to Select—Shuffled. Further de-
tails are included in the Appendix.

Investigating Data Mixing Alignment

We find that, in aggregate, humans’ selection indicates align-
ment with the underlying mixing coefficient (see Fig. 2).
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Figure 2: Averaging humans participants’ selections per im-
age pair reveal the typical image pair is minimally relabeled.

To our surprise, we find remarkable agreement in the av-
eraged selections per image pair across interface varieties;
the median difference in the aggregated selections per im-
age pair is approximately 0.05 — 0.06 across pairwise com-
parisons of interfaces. Interestingly, this is equivalent to the
median standard deviation amongst annotators per interface.
We also do not find a strong effect of starting position for
Construct. This is encouraging — and suggests that our
general framework is somewhat robust to interface structure.

However, we cannot conclude from these data that the
mixup data policy is aligned with humans. If we look at
the selections made by individual humans, we see that a
substantial portion endorsed a ¥ which differed from that
which would naturally be assumed in mixup (see Fig. 3).
Example images pairs which yield high relabeling across
interface types are shown in Fig. 4. We identify 9 such
image pairs that are highly relabeled (which we define as
[Ar, —0.5] > 0.15, where we let \;, be the mixing coefficient
used to generate the = selected by humans) across interface
types. This picture suggests that indeed human percepts are
not consistently aligned with the synthetic data construction
process — and that perhaps with a larger stimuli set, more
such examples can be recovered. Note, there are a total of
101 image pairs which are endorsed by at least one interface
as in need of high relabeling. More work is needed to elu-
cidate whether discrepancies in relabeling were induced by
the varied interface design or simply individual differences
among the participants recruited.

Individual Selections for the Perceived 50/50 Point
040 Construct (Start 0.1)
Construct (Start 0.9)
035 Select-Shuffled

Proportion Selected

""" "Selected Data Mixing Cosfficient.
Figure 3: Participants do not always endorse the 50/50 point
suggesting misalignment in the data labeling policy. Bar plot
depicts extracted mixing coefficient of individuals’ selec-
tions for the perceptually-aligned midpoints.



Takeaways These data suggest that while in general the
50/50 combined image is recoverable — at an individual
level, such percepts are more nuanced. Our data, which we
include as part of H-Mix, indicate systematic differences
in perceptions of synthetically-constructed data. These dif-
ferences emerge somewhat robustly across elicitation types.
We next turn to richer traces of humans’ perceptual repre-
sentations of these synthetically-generated data.

Elucidating Alignment of the Label Mixing
Policy (RQ2)

The above elicitation have focused only on the 50/50 point;
however, mixup trains on synthetically-generated images
sampled for a wide range of mixing coefficients. It therefore
warrants study to analyze human perceptual alignment over
a richer spectrum of mixing coefficients. We consider in-
stead eliciting humans’ judgments over what the label mix-
ing coefficient A4 ought to be. Studying the alignment of g
could push forward a deeper understanding of what the data
often used to train mixup and similar methods even means to
humans, and potentially further motivate the design of alter-
native relabeling schemes (see Section 5).

We therefore now focus on utilizing human input to de-
sign a perceptually-aligned target mixup policy gy, .

Problem Setting

We assume f is a linear mixing policy over inputs employed
in (Zhang et al. 2018). To form our human-aligned target
policy, we want to find a function g5 (y;,y;,A) = § such
that ¢ perceptually corresponds to the associated mixed in-
put f(x;,x;,A) = Az; + (1 — A)z; = Z. How do we get §
from people efficiently?

We consider matching A4 to what humans infer Ay to be.
In this setup, we assume humans are aware of the generative
processes f and g, and are shown the mixed image = and
underlying labels y;, y;. People are then tasked with form-
ing a probabilistic judgment as to what the underlying mix-
ing coefficient is that generated the observed image £ when
given the underlying y;, y; —e.g., judging P(Af|Z, ys, y;)-

If human perception is aligned to the underlying linear
mixup policies, then the human predicted mixing coefficient
A should be equivalent to A¢, rendering Ay = Ay = A a
sensible mixing scheme. However, if human estimates are
not aligned, we may consider setting A\, = A;, to make g
yield a ¢y which best corresponds to humans’ percepts of .

Elicitation Paradigm

To elicit such information, we design a new interface where
subjects infer the mixing coefficient between two given la-
bels. We show each worker a mixed image and tell them the
categories that were mixed to generate the image. Partici-
pants also provide us with their confidence in their inference.
As some image combinations appear quite convoluted, we
reason that subjects’ confidence in their inference — or lack
therefore — may provide interesting signals as to the percep-
tual sensibility of the mixed images.

Stimuli selection Similar to Section 3.2, we sample im-
ages to mix from CIFAR-10 (Krizhevsky et al. 2009). We
do so in a class-balanced fashion: 46 mixed images are sam-
pled for each of the 45 possible class combinations, re-
sult in 2070 total stimuli. Each mixed image is formed by
constructed by selecting a data mixing coefficient Ay €
{0.1,0.25,0.5,0.75,0.9}.

Human subject experiment We run our relabeling exper-
iment on N = 81 participants again through Prolific (Palan
and Schitter 2018). Further details are included in the Ap-
pendix.

Validating the Generating Mixing Coefficient
against Human Responses

We now compare the human-inferred mixing coefficient
against the generating coefficient and analyze participants’
confidence in such inferences. We also conduct a prelimi-
nary exploration into the relationship between participants’
predicted confidence and the ambiguity of the underlying
images being combined.

Relationship between Generating Mixing Coefficient
and Alignment We consider whether participants recover
the data mixing coefficient: in Fig. 5, we show the median re-
labeling for images at given data mixing coefficients. We ob-
serve — in aggregate — a non-linear, roughly sigmoidal struc-
ture to humans’ relabelings, consistent with past research in
human categorical perception (Harnad 2003; Goldstone and
Hendrickson 2010; Folstein, Palmeri, and Gauthier 2013;
Destler, Singh, and Feldman 2019). The aggregate recovery
of the 50/50 point corroborates our findings in RQ1. How-
ever, as we highlighted in Section 3, we find that the picture
is nuanced: wide confidence bounds illustrate that there are
mixed images for which participants’ inferred mixing co-
efficients are substantially different to the parameterization
assumed in mixup. Further, qualitative inspection of exam-
ple averaged relabelings for particular images (Fig. 6) — and
across category pairs (Fig. 7) — reveals such misalignment.
We recommend future work to better study why particular
category pairs, for this dataset, are yielding different bound-
aries.

Takeaways Our dataset, H-M1ix, highlights discrepancies
between humans’ internal models of synthetically generated
data compared to what is traditionally used in mixup. We
observe variable labeling policies on a category-pair basis
and uncover a likely relationship between the ambiguity of
the combined images and participants’ reported confidence
in their judgments (see Appendix).

Exploring the Impact of Learning with
Human Relabelings

In addressing RQ1 and RQ2, this work illuminates that hu-
man perceptual judgments do not consistently recover the
parameters of the generative model traditionally used to con-
struct data in mixup. These findings beg the question: if we
instead align the synthetic examples with human perceptual
judgments, how does this impact model performance? Such



Figure 4: Example image pairs where substantial relabeling of the 50/50 point was recommended across all interface types.
Synthetic images highlighted in blue received the most endorsements from participants across all interface types, with images
in green receiving second most. For row three, participants were split equally between two selections. The mixing coefficient
(Af or Ap) used to construct the images is shown along the bottom.
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the mixing coefficient used to generate the image (\,, red)
suggestive of misalignment. We depict the median, along
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Figure 6: Examples of average human relabelings of the gen-
erating mixing coefficient reveal discrepancies.

a question is important to consider in the pursuit of more
trustworthy ML systems: better generalization, robustness,
calibration, and a richer understanding of whether the mod-

els are at least trained on human-aligned data could all po-
tentially engender more stakeholder trust (Zerilli, Bhatt, and
Weller 2022).

To that end, we consider two initial empirical studies of
the impact of training on human perceptual judgments of
synthetic examples: one, wherein we compare training mod-
els with varied forms of labels on the specific set of 2070
mixed images from H-Mix, and another where we go be-
yond the collected examples and consider an first attempt at
constructing a generic human-aligned label mixing policy.
Here, we focus on the data collected for RQ2; i.e., for given
Z how should we change y. We encourage leveraging and
scaling the data collected in RQ1 for future work.

Relabeling Directly with H-Mix

Setup We train a ResNet and VGG variety (PreAct
ResNet-18 (He et al. 2016), and VGG-11 (Simonyan and
Zisserman 2014)) over 7,000 regular CIFAR-10 (following
the split used by (Collins, Bhatt, and Weller 2022)) com-
bined with the 2070 synthetically mixed images where we
vary the labels. While we would ideally study human rela-
belings for every synthetic image that could be generated
with f, we only have labels for a small subset and instead
compare using our labels versus traditional mixup labels
over a finite, augmenting set of combined images. 5 seeds
are run per variant per model architecture. Results are aver-
aged across architectures.

Evaluation We evaluate a suite of metrics over 3,000
examples from CIFAR-10H, a dataset containing labels
from many humans over the CIFAR-10 test set (Peterson
et al. 2019). We compare: cross entropy between the model-
predicted and the human-derived label distributions (CE),
model calibration following (Hendrycks et al. 2022) and ro-
bustness to the Fast Gradient Sign Method (FGSM) adver-
sarial attack (Goodfellow, Shlens, and Szegedy 2014), again
following the set-up of (Collins, Bhatt, and Weller 2022)
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Figure 7: “Category boundaries” elicited from humans display a diverse structure. Many — though not all — deviate from linearity
assumed in mixup. We overlay example synthesized stimuli shown to participants, ordered by the A; used to create them.

Leveraging Human Relabelings for ML Training We
first compare learning with our averaged human-inferred
mixing parameters against using the classical mixup labels
over the same 2070 synthetically-mixed images. We include
sanity checks with completely random and uniform labels
for the synthetic examples, as well as a baseline not includ-
ing any synthetic examples (“No Aug”). Interestingly, we
find in Table 1 that aligning the mixed example labels with
averaged human labels yields worse model performance. We
think these results are worth highlighting: it is not always the
case that aligning models to human perception yields mea-
surable performance gains.

However, the human-inferred )\, alone does not capture
the richness of humans’ perceptual judgments over the syn-
thetic images: participants at times reported being uncertain
in their inferences. Therefore, we next account for human
uncertainty (w) in the inference of the synthetic data gen-
erating parameter to construct softer y (see Appendix for
details). We find substantial performance boosts fall out of
leveraging human confidence. Such data suggest that indeed,
aligning models in accordance with human perceptual infer-
ences could have advantages — and suggests that confidence
could offer a potent modulator signal worth considering elic-
iting.

Generalizing Relabeling

So far, we have focused on varying the labels of a pre-
supposed augmenting set of mixed images; however, the set
was comparatively small (2070 images) and therefore does
not directly mimic the mixup learning paradigm. In practice,
mixup is typically applied over the entire dataset; that is, on
each batch, a new mixing coefficient is sampled, resulting in
often entirely new images being generated per batch. It is in-
feasible to consider recruiting human participants to relabel
every such image. Automated human-aligned labeling poli-
cies are therefore worth considering. We argue that our data
offers a prime starting point to explore such questions.

We offer a preliminary alternative label mixing policy
based on the human data we have collected in H-Mix. In-
spired by the non-linearities we observe at a category level,
we use scipy.curve_fit to fit a logistic function per
category pair. For each batch, we swap in our label mixing

policy to map from the sampled generating mixing coeffi-
cient to an approximately more human-perceptually aligned
coefficient. Such fits only account for humans’ relabelings,
not their confidence. Accounting for human confidence in
automated label policies is a ripe direction for future work.

Setup We follow the same ensembling and evaluation
methodology laid out in Section 5.1, but now run traditional
mixup following (Zhang et al. 2018) where generating mix-
ing coefficients are sampled from a Beta(1, 1) distribution
(i.e., uniform on (0, 1)).

Results We observe (see Table 2) a striking parity in per-
formance across models. These data highlight that construct-
ing more human-aligned data simulators is not necessarily a
harm to downstream performance and perhaps could be ben-
eficial. Note, we are only looking at performance on a small
set of possible metrics, and a relatively small set of held-out
data (3,000 examples). It is quite feasible that training on
more human-aligned data generating policies could induce
functional fits that are preferable to stakeholders even if we
see no objective improvement along particular performance
measures. We recommend such studies for future work.

Takeaways Human perceptual judgments can be leveraged
to construct alternative synthetic data generating policies
to train ML systems; however, the impact of such induced
methods of aligning with (approximations) of human per-
ception are not automatic salves. Our results highlight the
promise that could be offered by constructing more human-
aligned label policies, particularly through capturing and
representing human uncertainty, but more work is needed
before generalizing conclusions.

Related Work

Our work connects most closely to human-in-the-loop data
augmentation and the expansive literature surrounding hu-
man categorical perception from the cognitive science com-
munity, as well as ongoing efforts in the machine learning
community to develop more efficacious mixup-based data
and label mixing functions.



Table 1: Comparing performance when varying the form of the synthetic labels on the 2070 mixed images.

Label Type CE FGSM Calib
Regular (No Aug) 2.02£0.12  13.124+2.65 0.284+0.011
+ Random Labels 2.11£0.13  12.814+2.84 0.244+0.014
+ Uniform Labels 2.16£0.14 12.714£2.79 0.2540.012
+ mixup Labels 1.65£0.11 10.62+2.44  0.2340.005
+ Ours (Avg Relabelings) 1.78+0.12 11.69+2.90 0.2440.009
+ Ours (Avg Relabelings, with w)  1.484+0.06 8.89+1.59  0.1940.001
Table 2: Training with mixing policies fitted per category ments which does not permit the same kind of data and la-
pair, compared against full mixup. bel mixing alignment studies as our methods more directly
eliciting human-inferred generative parameters. Our work
Label Policy CE FGSM Calib also connects to other non-linear perceptual phenomena en-
mixup 1.15£0.08 7.46+2.40 0.10+0.01 00111 nteged n thf v1st1}a! doinalr}ihnar(rjl%y, bl?gcular ! 1valr3l/;
Human-Fits (Ours) 1.16+£0.08 7.32+2.27 0.10+0.01 Whereby present participants Wit a Citerent mage in eac

Human-in-the-Loop Data Augmentation

Incorporating expert feedback into the learning procedure
has received increasing attention (Chen et al. 2022). In par-
ticular, previous work has considered incorporating humans
“in the loop” for data augmentation. For instance, Dataset-
GAN (Zhang et al. 2021) employs human participants to
label GAN-generated images and feeds these back to the
model to generate more synthetic data. (Kaushik, Hovy, and
Lipton 2019) similarly incorporate human feedback by hav-
ing humans create counterfactual samples, and has been
shown to be an efficient method to adjust model behavior
(Kaushik et al. 2021). Other works have considered em-
ploying humans to provide ‘“rationales” about examples to
improve data-efficiency and downstream modeling perfor-
mance (Zaidan, Eisner, and Piatko 2007). Here, we marry
these ideas in the context of mixup by eliciting data and label
mixing function parameters to align with human percepts.

Human Categorical Perception

In cognitive science, eliciting humans’ judgments over
synthetically-constructed examples is a tried-and-true
method to characterize human category boundaries (Newell
and Biilthoff 2002; Folstein, Palmeri, and Gauthier 2013;
Feldman 2021; Folstein, Gauthier, and Palmeri 2012). Such
studies often reveal a non-linear structure of humans’ per-
cepts. For instance, in the audio domain, the identification of
vowel categories has been found to demonstrate “warping”
close to prototypical category members — known as the “per-
ceptual magnet effect” (Kuhl 1991; Feldman, Griffiths, and
Morgan 2009). Similar nonlinearities have been found in the
perception of boundaries between face identities (Beale and
Keil 1995) and the transitions between 3D shapes (Newell
and Biilthoff 2002; Destler, Singh, and Feldman 2019). Our
linearly interpolated stimuli are similar in spirit to the mor-
phological trajectories used in these works, as well as other
synthetically-combined images (Oliva, Torralba, and Schyns
2006). (Gruber et al. 2018) also consider 50/50 mixed im-
ages; however, their elicitation involves open-ended judg-

eye has been shown to induce oscillatory percepts (Blake
and Logothetis 2002; Tong, Meng, and Blake 2006).

Other mixup-Based Synthetic Data Schemes

Many alternative mixup data and label mixing functions have
been proposed (Verma et al. 2019; Yun et al. 2019; Kim,
Choo, and Song 2020; Kim et al. 2020; Hendrycks et al.
2022). Closest to our work, (Sohn et al. 2022) highlight
particular issues with the linear interpolation in label space
on the learned topology of the model’s category boundaries
and instead utilize a Gaussian Mixture Model (GMM)-based
relabeling scheme to construct “better” labels than those
used in baseline mixup. Additional work on learning bet-
ter pseudo-labels over mixup samples have been proposed
(Arazo et al. 2020; Cascante-Bonilla et al. 2020; Sohn et al.
2020; Qiu et al. 2022). Similarly, Between-class (BC) learn-
ing (Tokozume, Ushiku, and Harada 2017, 2018) proposes
hand-crafted adjustments to label construction to better align
with human perception based on waveform modulations;
however, to our knowledge, no previous works have directly
considered incorporating humans in-the-loop for either the
construction of mixup samples, or associated relabeling.

Discussion
(Mis)alignment of Synthesized Examples

Through a series of user studies, we uncover that human
perception of the synthetic images and corresponding la-
bels constructed in mixup does not consistently align with
the generative parameters often used to form said synthetic
examples. We find indications that participants’ confidence
in their inferred mixing coefficients tracks with the degree
of ambiguity of the original images that are combined. As
we have begun to explore empirically, such relabeling may
impact downstream model performance: re-aligning mixup
labels with humans’ reported judgments can impact learn-
ing, with human confidence seemingly poised to provide a
strong supervisory signal. The collation of humans’ infer-
ences of the mixup generative parameters could also be used
to benchmark whether models are aligned with human per-
cepts, say if H-Mix is used as a held-out or probe set (Gru-



ber et al. 2018). We recommend such directions for future
work.

Scaling Human-Centric Data Relabeling

A key challenge for human-centric relabeling of
synthetically-generated data (not unique to mixup) is
that a near infinite variety can be generated. It is not reason-
able to expect humans to judge all possibilities. Any attempt
then at human-in-the-loop relabeling faces the obstacle of
identifying which examples to relabel, and how to handle
cases which cannot be relabeled. While we take steps to
address the latter through fitting generic functions per class
pair that enable sampling of arbitrary mixing coefficients,
we highly encourage researchers to consider leveraging our
H-Mix to develop alternative human-grounded automated
synthetic data policies.

To address the former, we encourage looking to smarter
ways to select examples to use for querying people — rather
than random selection as we have done — such as (Liu
et al. 2021a, 2017), could be beneficial. Additionally, our
results raise the related question: are there particular rela-
belings that are hurting model performance? Prior works
have demonstrated how cleaning data can reduce model er-
ror (Pleiss et al. 2020). We encourage future work in this
direction in the context of H-Mix. Additionally, our re-
sults raise the related question: are there particular rela-
belings that are hurting model performance? Prior works
have demonstrated how cleaning data can reduce model er-
ror (Pleiss et al. 2020). We encourage future work in this
direction in the context of H-M1i x.

Limitations

Thus far, we only consider human validation and relabel-
ing of mixup labels for a single image classification dataset,
CIFAR-10. This dataset is low-resolution. Thus, the end-
point images — and the combinations of images — can be am-
biguous and challenging to interpret. It is possible that we
may find humans to be more, or less, aligned with the gener-
ative parameters for different image datasets, or for entirely
different data modalities, e.g., audio or video. We encour-
age the application of the HILL MixE Suite paradigm
to other datasets. Moreover, as we have many category pairs
—arising even from just 10 categories — we do not have a sub-
stantial number of synthetic examples per category pair (i.e.,
46 synthetically-mixed images for each of the 45 category
pairs). This could impact the stability of the category bound-
aries we elicit, e.g., potentially leading to breaks of mono-
tonicity (see Appendix A). Further, as with many web-based
human elicitation studies, it is not always clear whether
the responses returned arise from individual differences in
perception, participant noise or malicious behavior (Lease
2011; Gadiraju et al. 2015). We also do not train partici-
pants to have calibrated confidence; confidence judgments
included in H-Mix — while empirically useful for training —
could be infused with classical biases in humans’ probabilis-
tic self-reports (Lichtenstein, Fischhoff, and Phillips 1977;
Tversky and Kahneman 1996; O’Hagan et al. 2006; Sharot
2011). We also highlight that, aside from repeat trials, we

are unable to capture whether participants’ percepts fluctu-
ate — such instability is certainly a possibility when consider-
ing cognitive neuroscience research around perceptual dom-
inance (Blake and Logothetis 2002). Lastly, we emphasize
that all of our studies have considered US-based, English-
speaking participants. It is important to leverage the power
and breadth of the web to consider how perceptual judg-
ments of a more diverse cohort of humans may be differen-
tially aligned with the mixing parameters (Diaz et al. 2022).
We encourage further exploration of individual perceptual
differences, and their impact of learning, in our synthetic
data paradigm.

Extending to New Synthetic Data Paradigms

In this work, we focused on the synthetic data classically
used in mixup, as the simplicity of the data generating pro-
cess — a single mixing coefficient parameter — enables us
to precisely compare human versus traditional parameteri-
zations of the synthetic data construction process. We hope
our work spurs further study of aligning synthetic data gen-
eration with human perception, and motivates the design
of more human-aligned synthetic data to improve ML sys-
tems. We release the code of all interfaces included in our
HILL MixE Suite, which we hope will empower re-
searchers with additional tools to investigate humans’ per-
cepts over synthetically-constructed data. For instance, our
Select-Shuffled interface could readily be extended
to elicit stakeholders’ preferences, in the form of selection,
over any collection of constructed synthetic examples.

Conclusion

Through a series of online elicitation studies, we find that the
synthetic examples generated via mixup differ in fundamen-
tal ways from human perception, suggesting misalignment
of the data and label mixing policies. We offer early indica-
tions that collating humans’ percepts of these synthetic ex-
amples could impact model performance, particularly when
modulated by human confidence. Our work further moti-
vates the design of automated relabeling procedures for syn-
thetic examples which leverage elicited human data (e.g.,
training a model to predict a likely human’s mixing coef-
ficient) to sidestep inherent issues with scaling human an-
notation over the space of possible synthetic examples, par-
ticularly in eliciting and utilizing human confidence. Syn-
thetic data of all kinds is proliferating: we encourage more
researchers to consider these data from a human-centric per-
spective, investigating whether such examples align with hu-
man percepts, and if not, whether modulating labels and
learned representations to better match human percepts can
yield better performing models.
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Analyzing Human Uncertainty

Additionally, while intuitive, we investigate whether there
are specific predictors of when and why a mixed image
may be hard to label — e.g., perhaps images which are nat-
urally ambiguous become even more muddled when com-
bined. We use the entropy of the CIFAR-10H labels as a
measure of image “ambiguity”(Peterson et al. 2019; Battle-
day, Peterson, and Griffiths 2020). Recall, CIFAR-10H la-
bels are constructed from many annotator’s judgments about
the most probable image category; entropy is therefore com-
puted over the frequencies of these class selections and cap-
tures some sense of the amount of disagreement between
annotators.

We compare humans’ elicited confidence in their mixing
coefficient, and the amount of relabeling (| A, — A¢|) against
the entropy of the CIFAR-10H labels of the images being
combined. We find in Fig. 8 that if both endpoints are high
entropy under CIFAR-10H (where we consider “high” be-
ing entropy > 0.5), participants report markedly lower con-
fidence in their inference than if both endpoints have low
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Figure 8: Confidence reported by annotators in their in-
ference of A, as a factor of whether the combined labels
Yi,y; are high or low entropy. Entropy is measured over the
CIFAR-10H human-derived labels.

entropy (entropy < 0.1). However, we do not find a signif-
icant effect of endpoint entropy and amount of relabeling.
This suggests that the ambiguity of the underlying images
being mixed plays some role in determining when the result-
ing synthetic image may be hard to label, but there remains
a question as to what can predict high amounts of relabeling
from participants. We leave these questions for future inves-
tigation.

Additional Notes on H-Mix
Human Subject Experiments

We include additional details on our human elicitation stud-
ies. For all experiments, we require participants speak En-
glish as a first-language and reside in the United States.

Elicitation (RQ1) Each participant sees a total of 32
mixed images, where the final two are repeats. Repeats
are primarily used here to measure raters’ internal con-
sistency?. The median time taken per participant per im-
age as 9.30 and 11.01 seconds for the Construct and
Select-Shuffled interfaces, respectively. A bonus was
offered to encourage participants to provide responses which
would match what other participants would provide; we ap-
plied this bonus to all participants post-hoc resulting in the
average participant being paid at a rate of $11.78.

Elicitation (RQ2) Each participant sees 59 — 62 images,
where two images are repeated. Repeats are placed at the end
and correspond to the images presented on trials 15 and 20,
respectively®. The order of the images presented in a batch,
as well as the order of the endpoint labels displayed for a
given image, are shuffled across participants. We follow the
same third-person perspective prompting in Section 3 from
(Chung et al. 2019). Participants are asked “what combina-
tions of classes” they thought other participants would say
is “used to make” each image, and “how confident” they

ZParticipants’ selections, for each interface type, change by a
median of 0.1 in repeat trials, suggesting some inconsistencies in
participants’ judgments which persists across elicitation method.

3We observe a median difference of 0.03 and 0.05 in the in-
ferred mixing coefficient and confidence on repeat trials, indicative
of high intra-annotator consistency.



thought other participants would be in their estimate. Re-
sponses are indicated on a slider per question. An example
survey screen can be seen in Fig. 12. Subjects took a median
of 8.41 seconds per image and were payed at a rate of $8/hr,
with an optional bonus which sought to encourage partici-
pants to provide calibrated confidence estimates, similar to
that of (Vodrahalli, Gerstenberg, and Zou 2021); the bonus
was applied to all participants post-hoc. Each mixed image
was seen by at least two different participants each. Our in-
terface is depicted in Fig. 12.

Break from Monotonicty

For users of H-M1i x, it is worth noting that we do encounter
some breaks with monotonicity (see Fig. 9) in a few of the
aggregated “category boundaries.” We reason this could be
in part due to several aspects of our set-up. First, our study
involved irregular sampling across the space of mixing coef-
ficients we consider: the 50/50 point is enriched. We ran two
phases of elicitation: in the first, we sampled 6 image classes
per pair to be shown for three mixing coefficients: 0.5, and
one chosen randomly from each of the sets {0.1, 0.25} and
{0.75, 0.9}, respectively (810 images of the 2070). All 1260
other images are shown for a single mixing coefficient sam-
pled uniformly from the set. Second, while we have human
judgments for over 2000 total images, there are less than 50
synthetic images considered for each category pair, giving
any participant noise — or the odd image — greater leverage
to impact trends. We encourage others to use HILL-MixE
Suite and continue to scale this work and elucidate the sta-
bility of the inferred mixing coefficient category boundaries
we begin to hint at here.
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Figure 9: Category boundary elicited from human partici-
pants involves a break with monotonicity.

Confidence-Based Smoothing Details

We include further details of our methodology for leverag-
ing human-provided confidence to construct y introduced
in Section 5. Human-derived soft labels have been demon-
strated to be valuable for learning (Nguyen, Valizadegan,
and Hauskrecht 2013; Peterson et al. 2019; Collins, Bhatt,
and Weller 2022; Sanders et al. 2022). We transform hu-
mans’ reported confidence into a smoothing parameter to
induce softness using an exponentially-decaying function of
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human-provided confidence w: a * (b*); here, a = 50,b =
0.0001. We use the transformed confidence for additive
smoothing on the two-category g, spread mass accordingly
across the full gamut of classes. That is, we use smooth
the mass between a completely uniform distribution and a
“two-hot” label which uses the human-derived relabeling.
Parameters a, b are selected using a held-out set of regular
CIFAR-10 images (from a € {5,10,15,25,50,100},b €
{0.00001, 0.0001,0.001,0.01,0.1}). We recommend the
consideration of alternate smoothing functions, which could,
for instance, account for miscalibration in humans’ reported
confidence.

Further, we compare the impact of learning with aggre-
gated versus de-aggregated participants’ predictions. In Sec-
tion 5, we considered learning with relabelings averaged
across participants for a mixed image, and smoothed with
confidence reports averaged across participants. Here, we
consider instead separating out participants’ responses to
learn with individual relabelings smoothed by individual
confidence, closely related to (Wei et al. 2022). We find
in Table 3 that learning with de-aggregated data could po-
tentially offer greater performance gains. However, as (Wei
et al. 2022) discuss: whether to aggregate can depend on
many factors. Our empirical findings support the need for
tailoring label construction in context.

Interfaces Included in HILL MixE Suite

We display sample pages of the interfaces created and used
in this work, which we release as part of HILL MixE
Suite. Interfaces for Section 3 are shown in Figs. 10 and
11; the interface used Sections 4 is depicted in Fig. 12.

twould liely be rated by 0% mi

like a Horse. Pres

Figure 10: Construct interface where participants press ar-
row keys to select Z.
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g
i 4
g

Figure 11: Interface for the selection of a given )\, from a
set of possible mixed images.



Table 3: Varying whether to aggregate when using incorporating human confidence w in label construction.

Label Type CE FGSM Calib
Ours (Avg with w) 1.48+£0.06 8.89+1.59 0.19+0.01
Ours (Separated with w) 1.444+0.11 8.33+1.92 0.1940.01

Imagine 100 crowdsourced workers are told that the following image is a combination of images from the following classes: Airplane and Automobile.

of the classes do you think they make this image?

be in this estimate?

Figure 12: Interface for inferring the mixup generative label
parameter and providing confidence in such inference.

Alternative Synthetic Example Category
Composition Elicitation

Given human participants are uncertain about the underly-
ing mixing coefficient in a number of cases, we consider
whether the category composition typically used in mixup
— e.g., placing mass only on the labels of the images used
to form the synthetic combined sample — are reasonable. As
demonstrated in Fig 13, the synthetic mixup image may look
like something else entirely.

We therefore consider a follow-up small-scale human
elicitation study wherein we relax the mixup assumption that
the label mixing function must output a label constructed
only from the two classes used to form the mixed image —
and instead collect 3 directly by showing the mixed image to
human annotators in the form of soft labels. This provides a
comparison to the previous human-annotated endpoint label
mixing coefficients, and can further inspire useful designs
for the label mixing policy.

Study Design

We recruit N = 8§ participants again from Prolific (Palan and
Schitter 2018), yielding soft labels over a total of 100 mixed
images. The images are drawn from the same set of stimuli
created in Section 4; however, here, we only show images
with a mixing coefficient € {0.25,0.5,0.75}. Participants
are told that images are formed by combining other images,
and are asked to provide what they think others would see
in the image. Participants are asked to specify what others
would view as the most probable category with an associated
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Figure 13: Example combined image (A = 0.5; horse/ship)
which has been relabeled by humans (blue) using our soft
label elicitation. The label which would be used by mixup is
shown in red.

percentage (on a scale of 0-100), an optional second most
probable category with a probability, and any categories that
would be perceived as definitely not in the image. Again em-
ploying the third-person viewpoint framing borrowed from
(Chung et al. 2019). We rely on the soft label elicitation in-
terface proposed in (Collins, Bhatt, and Weller 2022) and
modify the instructions to be better suited combinations of
images. All elicited judgments are included in our data hub,
H-Mix.

Analyzing Elicited Soft Labels for Synthetic Images

We explore the correspondence between the elicited cate-
gory compositions of the mixed images with the labels that
would be used to generate the mixed image (as would be
used in traditional mixup; i.e., placing mass only on two
categories). While participants did tend to place probabil-
ity mass on the generating endpoints that correlated with
the mixing coefficient used (Pearson » = 0.52). Interest-
ingly, we find that participants report thinking that 38.3%
(£0.6%) of the probability mass of a label should be placed
on different classes from those which are used to create the
image. This is remarkable and suggests that mixed images
do not consistently look like the labels used to create them,
corroborate similar trends found in (Gruber et al. 2018)
wherein humans endorse categories which are not present
in the image. Hence, alternative labelings even beyond the
kind we explore in the main text may be preferred which
are more aligned with human percepts. Examples of such
labeled mixed images are shown in Fig. 13.

Takeaways The typical two-category labels used in mixup
do not consistently match human perception. We find that



human annotators often assign probabilities to alternate
classes when asked to label a mixed image. This suggests
that the pursuit of aligning synthetic data labeling to match
human perception, at least for the synthetic data construc-
tor used in mixup, warrants the design of alternative label
mixing functions g,.;., Which yield richer label distributions
over a broader range of categories.
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