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Abstract

Preference-based Reinforcement Learning (PbRL) methods
utilize binary feedback from the human in the loop (HiL) over
queried trajectory pairs to learn a reward model in an attempt
to approximate the human’s underlying reward function cap-
turing their preferences. In this work, we investigate the issue
of a high degree of variability in the initialized reward models
which are sensitive to random seeds of the experiment. This
further compounds the issue of degenerate reward functions
PbRL methods already suffer from. We propose a data-driven
reward initialization method that does not add any additional
cost to the human in the loop and negligible cost to the PbRL
agent and show that doing so ensures that the predicted re-
wards of the initialized reward model are uniform in the state
space and this reduces the variability in the performance of
the method across multiple runs and is shown to improve the
overall performance compared to other initialization meth-
ods.

Introduction

Reinforcement Learning (RL) allows Al agents to learn by
trial and error (Mnih et al. 2015; Arulkumaran et al. 2017,
Verma et al. 2019). While the dynamics of the interaction
are governed by the environment in which the agent exe-
cutes a chosen action, the only task-relevant learning sig-
nal comes from the given reward function. Therefore, sev-
eral of the recent works on RL (Hadfield-Menell et al. 2017,
Vamplew et al. 2018) have pointed out the importance of the
specified reward function in achieving a given task. Hence,
despite recent successes of Deep Reinforcement Learning
for complex high dimensional state and action space do-
mains, prior works have found that specifying reward func-
tions for seemingly “easy” tasks could be extremely hard, to
begin with, and this becomes even more challenging with
potential issues of reward hacking (Vamplew et al. 2018;
Krakovna et al. 2020) that may impact Human-Al trust (Za-
hedi et al. 2021, 2022). In fact, works in explainable Al liter-
ature have attempted at explaining environment dynamics to
human in the loop (Sreedharan et al. 2020; Verma, Khark-
wal, and Kambhampati 2022; Gopalakrishnan, Verma, and
Kambhampati 2021a,b), indicating that requesting detailed
reward specifications over low-level state space is challeng-
ing for HiLL (Verma et al. 2021).

Several solutions to the reward learning problem have
been proposed in the past like learning from demonstration
(LfD) (Schaal 1996) or advice (Guan et al. 2021; Guan,
Verma, and Kambhampati 2020), imitation learning (Hus-
sein et al. 2017) and preference-based reinforcement learn-
ing (Verma and Metcalf 2022; Lee, Smith, and Abbeel
2021; Park et al. 2022; Christiano et al. 2017). While each
paradigm has its own challenges, Preference-based Rein-
forcement Learning (PbRL) relies on binary feedback of a
human in the loop (HiL) on queried trajectory pairs to con-
vey what the user “wants” or “prefers”, in contrast to a HiLL
performing a demonstration for imitation learning or LfD
line works which could be prohibitively expensive, or hu-
man may not have expertise on specific action choices, for
example, a human may find it easier to provide their prefer-
ence over two trajectories regarding which one appears more
as a humanoid back-flip than to demonstrate it.

061.061.061.061.061.061.0(
0.660.860.810.960.9! 061.061.061.061.061.0
0.620.760.870.910.9: 80.980.990.990.991.061.0!
0.540.710.840.820.8: 830.830.850.960.930.950.960.9
10.470.630.760.640.560.560.500.480.470.550.630.710.730.740.79
0.430.520.480.450.370.360.360.350.350.380.410.440.460.470.5
0.460.460.280.280.310.320.330.330.340.340.350.350.360.370.39
0.310.220.110.160.240.290.310.320.320.30.330.330.330.340.3

0.140.260.360.360.310.310.310.320.30.330.33

0.130.230.280.280.290.360.290.360.310.310.3:
0.050.170.230.240.260.280.280.250.270.280.2

Figure 1: “Patchy” or non-uniform reward prediction by us-
ing Kaiming-Uniform weight initialization (left), and the
predicted reward values of states by the proposed data-
driven reward initialization method over a 15x15 gridworld.
Numbers in each cell show the maximum reward,ﬁ,h, that
the agent upon taking an action in that cell.

In Preference-Based Learning methods, recent works
(Lee, Smith, and Abbeel 2021; Park et al. 2022; Verma,
Kharkwal, and Kambhampati 2022; Christiano et al. 2017;
Verma and Metcalf 2022; Soni et al. 2022) have looked at
learning the underlying human reward function from hu-
man binary feedbacks on trajectory pairs queried by the RL
agent. In this work, we focus our attention to the class of
PbRL works that attempt to learn (or approximate) a re-



ward model from human preferences. We first discuss that
learning a reward model from a finite, possibly small num-
ber of trajectory preference queries can potentially lead to
degenerate solutions (that is, significantly different, multi-
ple reward models can equally explain the given trajectory
preferences, thereby yielding very different agent policies).
Now, although this is majorly caused by the limited feed-
back queries we found that high variability in the learned
reward model and subsequently the learned agent policy
is also seen when we vary the reward function initializa-
tion strategy. We find that the PbRL reward learning pro-
cess is extremely sensitive to the reward function initializa-
tion and changing the random seed for the initialization can
produce extremely positive or negative results. In this view,
we propose a data-driven reward function initialization tech-
nique (inspired from data-driven weight initialization meth-
ods (Narkhede, Bartakke, and Sutaone 2022)) that not only
stabilizes the resultant performance across multiple runs but
also improves the agent’s performance at learning the un-
derlying reward function at potentially zero additional cost
to the HiL or the agent being trained.

Background

Preference-based Reinforcement learning agents sample
pairs of trajectories 7y, 71 using a random policy or via the
policy w4 being learned. An image projection of these tra-
jectory pairs is shown to the human (with image space as
the established lingua franca (Kambhampati et al. 2022) be-
tween the agent and HiL) in the loop where they provide
binary feedback to highlight their relative preference of one
trajectory over the other, hence populating a buffer D, with
tuples < 7¢,7¢,y* >. Extending from a typical reinforce-
ment learning setup, preference-based RL agents solve the
reward learning problem, P =< M\ r, Rﬁ, 7 @Q > (Shah
et al. 2020) where the agent models the world as a Markov
Decision Process M \ r =< S,7, A > without any en-
vironment reward, and instead uses a learned RZ} reward
model by querying ¢ € () questions of the form of tra-
jectory pairs to the HiL to obtain binary feedbacks regard-
ing their preference. Recent PbRL works have resorted to
supervised learning to solve this problem of reward learn-
ing. First, they approximate the underlying human reward
model R" by a bounded, parameterized function approxi-
mator RZ) : S — R. They use the Bradley Terry model
(Bradley and Terry 1952) to obtain the probability of one
trajectory being preferred over another, Py, as the softmax
(Bishop and Nasrabadi 2006) over predicted returns (as the
sum of predicted rewards) over the two trajectories.
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This is essentially a classifier to approximate human pref-
erence feedbacks which can be trained by minimizing the

cross entropy loss between the predictions and the ground
truth human labels as follows :
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Several works have extended the above approach in vari-
ous ways, by building priors over the reward space, improv-
ing the query method, improving the exploration strategy,
and state or temporal augmentation to name a few. In this
work, we are interested in realizing how susceptible is the
backbone algorithm used in several PbRL works to reward
initialization and subsequently propose a simple initializa-
tion method that poses zero cost to the human in the loop as
well as to the PbRL agent.

Problem

It is well known in the Inverse Reinforcement Learning com-
munity that reward model learning suffers from the issue
of degeneracy. We discuss reward model degeneracy in the
context of preference-based reinforcement learning. Even
with a large amount of feedback queries to the human in the
loop to elicit their preferences, as pointed out in (Ng, Rus-
sell et al. 2000), the base case of RZL)(S) =0Vs e Swil
always be a solution as any policy 7, including a random
policy as well as the optimal human policy 7, according

to their underlying reward model RP, is optimal. Without a
good inductive bias, we posit that reducing the number of
queries to the human in the loop will eventually allow for
more degenerate solutions.

However, recent works (Lee, Smith, and Abbeel 2021;
Park et al. 2022; Christiano et al. 2017; Verma and Met-
calf 2022) all suffer from the issue of degeneracy more than
one may expect. In our experiments with (Lee, Smith, and
Abbeel 2021) baseline, we found that the method has high
variance in the performance of the learned reward model and
is very sensitive to extraneous parameters like random seen
of the experiment. Now, although several other sources con-
tributing towards the reward function degeneracy exist and
may even be unidentified, we found that reward initializa-
tion can have a big impact on the subsequent agent’s reward
recovery and policy performance.

Sensitivity to Reward Initialization

Typically, RL (and PbRL) works do not focus on reward
function initialization and try to subdue its effects on the
final performance by showcasing mean performance over
multiple experiments runs. However, in our initial investiga-
tion, we found that a change in the initial reward estimates
can have a substantial impact on the final performance.
Even with uniform initialization methods (Hu, Xiao, and
Pennington 2020; He et al. 2015), we note that the initial-
ization remains uniform in the parameter space 1y ~ U of
the reward model RZ, however, the subsequent reward over
the domain of the state space under consideration is not at
all uniform. In fact, as shown in figure 1 (left), the initial re-
ward values over a 15x15 gridworld space are “patchy” or
has certain “peak” state locations and the rewards smoothen
out from there. At the very least, such initial rewards heavily
bias the sampled trajectories to query the human in the loop
whereas in many of the initial queries the given two trajecto-
ries are extremely similar contributing to the cognitive load
on the human in the loop. In fact, such initialization is as-
sumed to be a “feature than a bug” where works consider



Figure 2: Variations in the initial reward values on 7x7 gridworld domain, when initialized using Xavier-Uniform across three
different seeds. Numbers in each cell show the maximum reward,R", that the agent upon taking an action in that cell.

the initial randomness as a means for the agent to explore
in the world. Although we agree that random initial rewards
can in fact aid with coming up with diverse trajectories to
query to the human in the loop, in reality, it is the reward
parameters that are uniform and not the rewards themselves.
In fact, we propose that the initialization of reward model
parameters such that the corresponding reward values on the
domain of the state space of the world are uniform will help
with reward learning as well as stabilize the performance
across various random seeds.

Method

To solve the issue of sensitivity of performance to reward
initialization, we use our insight as mentioned in section

to propose our data-driven reward initialization method
which ensures a uniform co-domain of the reward function
7(s,a). Several PbRL works have utilized an unsupervised
pre-training step that enables the agent to collect several tra-
jectories in a buffer, from which trajectory pairs are sampled
and queried to the user when the main training episodes be-
gin. Say, the agent populates a buffer D, with trajectories 7;
by exploring the world via a policy m. We propose that en-
suring that the predicted rewards over all the states visited in
all the trajectories s; € 7; € D, Vi, j are the same, say some
non zero value helps the agent learned much faster and en-
sures that the performance of the learned policy is consistent
across various experimental runs (by varying random seeds).
Hence, for the acquired dataset D, and some non-zero con-
stant ¢, we solve a regression problem by minimizing the
following pretraining-initialization loss,

i=|j|

Lp= Y > |[Ri(s) —e, 3)

Ti~Dy i=1

Note that RZ is updated using the pretraining-

initialization loss only once to obtain a uniform RZ. After
this data-driven initialization, we follow the same algorithm
as (Lee, Smith, and Abbeel 2021) as our baseline. This addi-
tional update to the reward model has zero cost to the human
in the loop and a one-time fixed cost for the agent (which is
negligible in the context of training both RZZ and 7 in a PbRL
algorithm.)

Results

To validate our proposed pretraining-initialization reward
model loss, we conduct our experiments on a 7x7 gridworld
and a 15x15 gridworld. The gridworld environment is square
n X n matrix-like domain where the agent starts at the top
left corner. The agent can take discrete action steps, such
as, Up, Down, Left, and Right to navigate around the grid-
world space. The underlying human reward, operationalized
via oracular rewards, is assumed such that the goal location
is the bottom right corner. We use the negative of euclidean
distance from the current agent’s location to the goal loca-
tion as the underlying human reward function. This oracular
reward, R, is used to provide binary feedbacks when tra-
jectory pairs are queried as:

5h 5h
y(ro,m1) = {0 LR () > 20 Rn) )
L > RY(m0) < X2, RY (1)

Figure 2 shows the high degree of variability in the initial-
ized reward values for the gridworld states when Xavier (Ku-
mar 2017) weight initialized is used for the reward model.
As indicated in previous sections, the predicted rewards are
not uniform over the state locations and in fact vary quite
significantly across different random seeds. Variability in
initial reward estimates is not a problem in itself as the train-
ing process is expected to correct for it, however, in practice,
we found that in cases when the reward function was initial-
ized “randomly” to align with the goal as in figure 2 (mid-
dle) the agent’s performance was significantly better than
when the initial reward estimates were incorrect, say, figure
2 (right).

We studied the impact of various popular initialization
schemes for deep neural networks such as Kaiming Uni-
form (He et al. 2015), Xavier Uniform (Kumar 2017), Or-
thonormal (Hu, Xiao, and Pennington 2020), Zeros and
Ones. While initial rewards for the case of zeros weights
and ones weight initialization is easy to visualize, figure 3
shows the reward initialization for Xavier (right), Orthonor-
mal (middle), and Ours (left). It can be instantly noticed that
in our data-driven initialization, with ¢ = 0.4, almost all
the states have a predicted reward value of 0.4 which is as
expected. However, for Xavier and Orthonormal initializa-
tion, the predicted rewards vary significantly across different



Figure 3: Variations in initial reward values on gridworld states as per Our data-driven approach (left), orthonormal initialization
(middle), and Xavier initialization (right). Numbers in each cell show the maximum reward,RP, that the agent upon taking an

action in that cell.
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Figure 4: Return of the learned policy on the 7x7 gridworld
as measured on the ground truth human reward R" compar-
ing Ours with baseline initializations.

states (hence, are “patchy’’). We allow 15 episodes of unsu-
pervised pretraining steps for collecting trajectories in the
PEBBLE backbone, which doubles as our dataset for mini-
mizing Lp loss.

Figure 4 shows the results using various initialization
strategies, averaged over 3 independent runs, (Ours, Ones,
Zeros, Xavier-Uniform, Orthonormal) on a 7x7 gridworld
domain with PEBBLE as the backbone PbRL algorithm im-
plemented with DQN (Mnih et al. 2013) as the RL agent (in
contrast to SAC (Haarnoja et al. 2018) which works with
continuous action spaces), with all hyperparameters being
the same across all runs. As expected, the data-driven reward
initialization technique proposed in this work has very less
variance compared to other initialization techniques (except
zeros, where all the predicted rewards are also zeros, but it
suffers from poor performance). Additionally, as discussed
before, a uniform reward initialization over the state space
improves exploration and allows the agent to collect more
diverse trajectories thereby improving the queries made to
the human in the loop. This also improves the overall per-
formance of Our initialization technique.

We also compare our data-driven initialization with
Kaiming-Uniform initialization (He et al. 2015) on a 15x15
gridworld with similar semantics as our 7x7 gridworld. Fig-
ure 5 shows that even in the larger gridworld space our
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Figure 5: Return of the learned policy on the 15x15 grid-
world as measured on the ground truth human reward R".

method can perform better than the baseline with zero ad-
ditional cost to the human in the loop as well as a negligible
cost to the PbRL agent. Figure 1 shows the initial reward
values as computed by both the methods Ours (right) and
Kaiming-Uniform (left), and further highlights the issue of
non-uniform reward values over the state space locations.
On the other hand, even though (fig. 1 (right)) reward ini-
tialization is not truly uniform, it is more consistent for un-
seen states (which are farther from the start location of the
top-left corner).

Discussion

In this work, we present the issue of the degeneracy of the
reward model in preference-based reinforcement learning
works, which in part is impacted by non-uniform predicted
rewards over the state space domain. This can cause high
variability in the performance measures across various runs
and is found to be very sensitive to random seeds. We miti-
gate this issue by a data-driven reward initialization method
that utilizes the states collected while performing unsuper-
vised exploration (a common theme in several PbRL works)
to ensure that the predicted rewards over all the states are
the same by solving a regression problem. We validate our
insights over two gridworld domains of sizes 7x7 and 15x15
which were chosen to visualize the predicted rewards.

We plan to further investigate the impact of reward ini-



tialization across more complex domains used in PbRL lit-
erature like locomotion tasks, robotic manipulation tasks,
and other explicit discrete action domains. Additionally, this
work calls for a more thorough investigation of potential rea-
sons that worsen the issue of reward function degeneracy.
Finally, we also plan to study the impact of reward initial-
ization across various PbRL methods like (Park et al. 2022;
Verma and Metcalf 2022; Christiano et al. 2017).
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