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Abstract

Reinforcement Learning has suffered from poor reward speci-
fication, and issues for reward hacking even in simple enough
domains. Preference Based Reinforcement Learning attempts
to solve the issue by utilizing binary feedbacks on queried
trajectory pairs by a human in the loop indicating their pref-
erences about the agent’s behavior to learn a reward model.
In this work, we present a state augmentation technique that
allows the agent’s reward model to be robust and follow
an invariance consistency that significantly improved perfor-
mance, i.e. the reward recovery and subsequent return com-
puted using the learned policy over our baseline PEBBLE.
We validate our method on three domains, Mountain Car, a
locomotion task of Quadruped-Walk, and a robotic manip-
ulation task of Sweep-Into, and find that using the proposed
augmentation the agent not only benefits in the overall perfor-
mance but does so, quite early in the agent’s training phase.

Introduction
Machine Learning (Pouyanfar et al. 2018; Verma and
Buduru 2020; Verma et al. 2019b), specifically Deep Rein-
forcement Learning (Mnih et al. 2015; Verma et al. 2019a;
Arulkumaran et al. 2017) has been quite successful for sev-
eral tasks (Brockman et al. 2016) that especially those with
high dimensional states and action spaces. However, much
of the credit to the RL agent’s success is attributed to the
reward function specification (Hadfield-Menell et al. 2017;
Abel et al. 2021; Ferret et al. 2020; Verma et al. 2019a).
Among several challenges in designing a “good reward”
(Hadfield-Menell et al. 2017) function that allows the RL
agent to learn trustworthy policies (Zahedi et al. 2021, 2022)
like sparsity of the reward, balancing scales of reward sig-
nals, etc, one major issue that researchers have found is the
inability of specifying the reward function, to begin with,
(Vamplew et al. 2018). To allow humans in the loop to spec-
ify their preferences over the agent’s goals and behavior,
Preference-Based Reinforcement Learning (PbRL) (Wilson,
Fern, and Tadepalli 2012) utilizes binary evaluative signals
over trajectory pairs given by the human in the loop to con-
vey their preferences to learn the human’s reward model and
subsequently learn a usable policy over it.

Preference Based Reinforcement Learning allows human
in the loop to specify their preferences in the form of binary

feedback over agent-generated trajectory pair queries. This
can prove to be quite beneficial for several reasons. First, the
human in the loop gets to realize how the trajectories “look”
like and does not have to imagine these trajectories thereby
taking into account human’s cognitive limitations. Second,
the human in the loop need not be an expert engineer and
is not required to be aware of the underlying agent repre-
sentation to hand-design a reward function and instead can
use the image as the lingua franca (Guan et al. 2021; Guan,
Verma, and Kambhampati 2020; Kambhampati et al. 2022)
to specify their preferences. Finally, issues of reward hack-
ing and “cheat-behaviors” have been noted by researchers
in prior works and PbRL can serve as a potential alternative
to reward engineering to tackle these issues (Vamplew et al.
2018; Krakovna et al. 2020).

Recent works in PbRL have focused on improving the
query strategy (Lee, Smith, and Abbeel 2021; Christiano
et al. 2017), exploration method (Lee, Smith, and Abbeel
2021), priors regarding the reward function (Verma and Met-
calf 2022), semi-supervised learning methods (Park et al.
2022) and temporal data augmentation (Park et al. 2022).
However, to the best of our knowledge, none of the existing
methods have attempted to provide a tailored solution for the
problem PbRL with image-based state representations. In
this work, we specifically focus on the problem of learning
from human preferences via binary feedback on trajectory
pair queries with a pixel-based image state representation of
the agent (Mnih et al. 2015, 2013). This is particularly help-
ful as in most of the recent PbRL works the lingua franca
used to communicate with the human in the loop are image-
based representations. Motivated by prior works in explain-
able AI (Verma, Kharkwal, and Kambhampati 2022) and
Advisable reinforcement learning (Sreedharan et al. 2020;
Guan et al. 2021; Guan, Verma, and Kambhampati 2020;
Verma et al. 2021), we present a data augmentation tech-
nique over image-based state representation of the agent that
shows significant improvements in the agent’s reward recov-
ery and subsequently high return collected by the agent’s
learned policy over the learned reward model for three con-
tinuous control tasks, Mountain-Car, a robotic manipulation
task Sweep-Into, and a locomotion task Quadruped-Walk.

Data augmentation has been explored for various rea-
sons in the context of machine learning and artificial intel-
ligence (Shorten and Khoshgoftaar 2019; Srinivas, Laskin,
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and Abbeel 2020; Guan et al. 2021), of which the fore-
most reasons are the robustness of the learned model (Cobbe
et al. 2019) and to impose consistencies (Sohn et al. 2020;
Xie et al. 2020; Berthelot et al. 2019). In addition to the
requirements of the robustness of the reward model and
to impose certain invariance consistencies we leverage the
observation that a good reward model should “focus” on
regions of importance and this should be reflected by the
model’s representation space. We combine the requirements
of robustness, invariance consistency and to have the re-
ward model “focus” on regions of importance into a sin-
gle data augmentation technique and showcase the bene-
fits across three continuous control tasks (OpenAI Gym’s
Mountain Car (Brockman et al. 2016), DM Control’s lo-
comotion task of Quadruped-Walk (Tunyasuvunakool et al.
2020) and Metaworld’s robotic manipulation task of Sweep-
Into (Yu et al. 2020)) and show that using such an augmen-
tation technique can help with an early boost in learning per-
formance at zero cost to the human in the loop.

Background
We have an agent M that interacts with the environment E
by taking an action a ∼ A on a state s. Typical reinforce-
ment learning frameworks assume an underlying Markov
Decision Process (MDP) as the tuple < S, T ,A,R > where
S is the state space, T is the transition function, A is the set
of permissible actions and R is the task reward function,
however Preference-based Reinforcement learning updates
this tuple by replacing R with R̃h, the human reward model,
as the tuple < S, T ,A, R̃h >.

The goal of PbRL is to approximate the human
reward model R̃h with a parameterized function ap-
proximator Rhψ . The agent, M , queries the human
in the loop with a trajectory pair τ0, τ1, τi =
{(sk, ak), (sk+1, ak+1 · · · (sk+H , ak+H))} and receives a
binary feedback y ∈ {0, 1} indicating the human’s preferred
trajectory, i.e. y = 0 if τ0 is preferred over τ1 and vice
versa. Such feedbacks along with the queried trajectories
are stored in a dataset Dτ as tuples (τ0, τ1, y). Recent PbRL
works have leveraged the Bradley Terry model (Bradley and
Terry 1952) to compute the probability of one trajectory be-
ing preferred over another. With means to computing this
probability, PbRL methods treat essentially solve the reward
learning problem via a classification problem where the tra-
jectory with a higher approximated sum of rewards (or the
return) is predicted to be the human preferred trajectory and
a reward assignment to the constituent states of τ0, τ1 that
achieves high accuracy in this supervised learning task is
taken to be the approximate human reward model. As typi-
cal in binary classification problems of supervised learning,
this is done by minimizing the cross-entropy between the
predictions and ground truth human labels as follows:

LCE = −E
(τ0,τ1,y)∼D

[y(0)logPψ[τ0 ≻ τ1]

+ y(1)logPψ[τ1 ≻ τ0]]
(1)

where probabilities Pψ are computed using the approxi-

mated reward function Rhψ as :
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Method
The key contribution of this work is to allow the reward
model to better utilize the queried trajectory pairs in the con-
text of image-based state representation of the RL agent M .
We aim to leverage three key benefits from a single state
augmentation technique, namely, robustness: a key indica-
tor for generalization of the learned rewards which becomes
all the more necessary with the aim of reducing the human
feedback sample complexity, invariance: to allow the agent
to successfully learn the state representation in the reward
model such that it is invariant to perturbations to regions in
the image space which is not important, and finally, motion-
based-importance: that marks regions in the image obser-
vations of the agent where a change has occurred intending
to motivate the agent to “focus” on such potential regions
while predicting the reward.

As noted by several prior works in the area of explainable
AI and advisable RL, image observations are expressed as
the pair < IC , IS > where IC are the pixels denoting the
content of the image and IS denotes the pixels that inform
about the style of the image. Typically, pixels related to the
style of the image do not offer any additional information
than just IC and IC would conceptually be similar to the ef-
fective dimensionality of the image observation required for
the task in concern. Prior literature has utilized either human
annotations to assume IC or attempted to use explanatory
techniques to inform users about IC . In this work, we use
the “motion-based-importance” insight to capture IC . For
an image observation and agent state I , let’s say I1, I2 · · · In
are observations such that there exists some action ai which
when taken on Ij j ∈ 1, 2 · · ·n can transition to I . Then the
image mask created by the union (of boolean mask matrices)
of all the differences between Ij and I will contribute to IC ,
i.e.

M(I, {I1, I2 · · · In}) =
⋃

j∈{1,2···n}

M(I, Ij) (3)

M(I, Ij) =

{
1, I(x, y) ̸= Ij(x, y)

0, otherwise
(4)

As the access to all predecessor states Ij for every I may
entail high exploration and storage requirements, it can be
approximated by using one predecessor observation It−1 at
a time to create the mask M for observation It in a trajectory
τ =< I0, I1, I2 · · · In >.

With equation 3 giving us the mask (as a proxy for all the
pixels referring to the content IC of an image I), we can
utilize it to inject our requirements of invariance. A popular
means of doing so is via perturbations of the style pixels.
We follow, (Guan et al. 2021; Greydanus et al. 2018) which
argues for using Gaussian perturbations as would still pre-
serve the texture of the remaining images, however, domain-
specific perturbations such as a change in objects in the
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background are also applicable but require extra informa-
tion. Gaussian perturbations using the mask in equation 4
can be defined as :

ϕ(I, Ij ,M) = I ⊙ (1−M(I, Ij)

+ G(I, σG)⊙M(I, Ij)
(5)

In the equation 5, G refers to the convolution of a gaus-
sian filter over the image I with standard deviation σG . ⊙
is the Hadamard product operation between the input image
or the gaussian blurred image and the binary mask matrix
M. Finally, from the dataset of preference feedback Dτ =<
τ i0, τ

i
1, y

i >, we can pick each trajectory τ i0 or τ i1 and produce
augmented trajectories by augmenting individual states and
chaining those states together to form the new augmented
trajectory. We augment a trajectory τ =< s0, s1, ...sn > as,

τg =< s0, ϕM(s1, s0), ϕM(s2, s1) · · ·ϕM(sn, sn−1) > (6)

and produce multiple augmented trajectories by varying
the standard deviation σG of the gaussian filter. Hence for
a set of standard deviations G = {σ1, σ2 · · ·σk−1} we can
generate k − 1 augmented trajectories from the original tra-
jectory τ as, {τ1g , τ2g · · · τk−1

g } to get a total of k trajectories
(one original τ , and k − 1 augmented τ ig).

We impose our invariance consistency requirement via the
following loss over the reward model Rhψ ,

LI(τ) =
1

|G|
∑
i∼G

∥∥Rh
ψ(τ)−Rh

ψ(τ
i
g)
∥∥
2

(7)

where Rh
ψ(τ) =

[
Rhψ(s0) Rhψ(s1) · · · Rhψ(sT )

]T
is a

vector of predicted rewards over the states in the trajectory.
This reward LI helps with both robustness and invariance
consistency as shown in section . This final reward model
update loss is a linear combination of this invariance loss
and the cross entropy loss as,

Lreward = λCELCE + λILI (8)

Finally, we also treat augmented trajectories as additional
data points for training the cross entropy loss LCE . Since we
optimize using stochastic gradient descent, we first sample
a batch of trajectory pairs and labels from Dτ and then use
augmented versions of these trajectories as additional data
points within this batch.

Experiments
In the preliminary investigation, we were interested to an-
swer whether the proposed augmentation technique can out-
perform the current state-of-the-art PbRL method (PEB-
BLE).

We validate our results on three continuous control
domains on pixel-based state representations (with stan-
dard preprocessing (Mnih et al. 2015, 2013)), i.e. Moun-
tain Car (MountainCarContinuous-v0) by OpenAI
gym (Brockman et al. 2016), one locomotion task of
Quadruped Walk quadruped-walk from MuJoCo (Tun-
yasuvunakool et al. 2020) and one robotic manipulation
task Sweep Into sweep-into-v2 from Metaworld (Yu

Figure 1: Evaluation curves on Mountain Car Continuous
Control as measured on the ground truth human reward R̃h.

Figure 2: Evaluation curves on the locomotion task of
Quadruped as measured on the ground truth human reward
R̃h.

et al. 2020). We use PEBBLE as the backbone Preference-
based Reinforcement Learning algorithm and update the
Lreward = λCELCE + λILI with λCE = 1, λI = 0.6,
and as mentioned before, use the augmented trajectories data
for training the cross-entropy loss as well by appending to
the dataset Dτ the following tuples < τ0g , τ

1
g , y >

i=|G|
i=1 for

each < τ0, τ1, y >. PEBBLE uses SAC as the Reinforce-
ment Learning algorithm underneath, and we used the same
hyperparameters used for Sweep Into and Quadruped-Walk
as suggested in PEBBLE (although they primarily showcase
results on low-level states instead of image observations).
We gave 1000 feedbacks for Quadruped-Walk and Moun-
tain Car, and 10000 feedbacks for Sweep-Into. SURF shows
results on pixel-based inputs for PEBBLE achieve similar
performance as our implementation of PEBBLE baseline.
Finally, as suggested in prior works, we use an oracular ap-
proach to evaluation where the rewards that come packaged
with these environments are assumed to be human’s reward
model, and the extent to which a PbRL method can recover
this underlying reward model is used as the success criterion.

Results
In order to realize how well a PbRL framework learned the
reward model, we evaluate the policy π learned on Rhψ over
the human’s underlying reward model R̃h. Any improve-
ments over the performance of the learned policy on the un-
derlying human reward model R̃h would indicate a more
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Figure 3: Evaluation curves on the robotic manipulation task
of Sweep Into as measured on the ground truth human re-
ward R̃h.

meaningful learned reward model Rhψ .
Mountain Car: is used as a toy domain to verify our

claims. The domain consists of a car placed at the bottom
of a sinusoidal valley with the goal to strategically acceler-
ate the car (action space is acceleration between -1 to 1) to
reach the top of the right hill (Brockman et al. 2016). Fig-
ure 1. We find that with very few feedbacks taken in initial
epochs, our approach can learn a reasonable reward model
and with more human feedbacks it outperforms the baseline.

Quadruped-Walk: is a quadruped (two bipedals) robot,
with four legs each having three actuators (a total of 12
continuous actions) with the goal of walking on a flat sur-
face. Figure 2 shows that our approach outperforms PEB-
BLE baseline on this locomotion task and as seen before, the
highest performance boost occurs within the initial training
episodes.

Sweep-Into: is a robotic arm in front of a puck placed
on a table with the goal to “sweep” the puck into the goal
location. The puck positions are randomized at the start of
each episode (as per the default package setup). We find sim-
ilar results as in our other two domains, where the proposed
state/trajectory augmentation (and subsequently the updated
reward loss) outperforms the baseline PEBBLE. Addition-
ally, we notice that the augmentations provide a significant
boost to the performance early in the training process and
help the agent maintain this performance gain throughout.

Discussion
In this work, we presented a state augmentation technique
tailored for image-based Preference-based Reinforcement
Learning. The proposed augmentation utilizes the insight
that regions of the image observation that update upon a
transition (when an action is taken), are at least a subset of all
the “content” available in the image observation. This allows
the reward model being learned to be cognizant of potential
regions of the image observation that are likely to be updated
in future steps (and history) while predicting the rewards.
Augmented trajectories are treated as additional query data
points to train the cross entropy loss along with the proposed
invariance loss that maintains prediction consistency (Guan
et al. 2021; Xie et al. 2020). The benefits of the approach
were validated on three continuous control domains, Ope-

nAI gym’s Mountain Car, a locomotion domain: DM Con-
trol’s Quadruped-Walk, and finally a robotic manipulation
domain: Meta World’s Sweep-Into.

Future work includes an exhaustive evaluation of the pro-
posed augmentation across more domains. We also plan to
evaluate the benefits of the proposed work when used with
other PbRL techniques and paradigms. Finally, we would
also like to study the advantages of using domain-dependent
perturbations.
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