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Abstract

There has been significant recent interest in developing AI
agents capable of effectively interacting and teaming with hu-
mans. While each of these works try to tackle a problem
quite central to the problem of human-AI interaction, they
tend to rely on myopic formulations that obscure the possi-
ble inter-relatedness and complementarity of many of these
works. The human-aware AI framework was a recent effort to
provide a unified account for human-AI interaction by casting
them in terms of their relationship to various mental models.
Unfortunately, the current accounts of human-aware AI are
insufficient to explain the landscape of the work doing in the
space of human-AI interaction due to their focus on limited
settings. In this paper, we aim to correct this shortcoming by
introducing a significantly general version of human-aware
AI interaction scheme, called generalized human-aware in-
teraction (GHAI), that talks about (mental) models of six
types. Through this paper, we will see how this new frame-
work allows us to capture the various works done in the space
of human-AI interaction and identify the fundamental behav-
ioral patterns supported by these works. We will also use this
framework to identify potential gaps in the current literature
and suggest future research directions to address these short-
comings.

Introduction
As AI systems are becoming an increasing part of our day-
to-day lives, there is a growing interest in designing AI sys-
tems that can interact with and team with humans fluently
and effectively. As such, there is an increasing body of
scholarly works that have tried to address various challenges
related to human-AI interaction in different settings. The
richness and diversity of challenges related to human-AI in-
teraction mean the works tend to use diverse tools and for-
mulations to address the challenges they are trying to ad-
dress. Unfortunately, this has also meant it is hard to make
sense of the overall landscape of the field owing to the lack
of a unifying framework, a shortcoming we hope to address
in this paper.

Within psychology, mental models and in particular the
theory of mind [1] have been proposed as a mechanism to
make sense of human-human interaction. One could poten-
tially extend the idea theory of mind and the use of mental
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Figure 1: The six models in the GHAI framework. M∗ are the
ground truth models of the task; MH and MR are the task models
that the human and the AI agent ascribe to themselves; MR

h and
MH

r are the estimates of the AI agent’s (human’s) model that hu-
man (AI agent) has.

models to also ground and categorize interaction between
humans and AI systems. The framework of human-aware AI
[2] has been proposed to incorporate the intuition of theory
of mind into the context of human-AI interaction. Unfor-
tunately, the current versions of the human-aware AI frame-
work are insufficient to adequately explain the various works
in the area. This is in part because the original human-aware
AI framework was introduced to capture settings where the
role of the human is limited to being a passive observer try-
ing to make sense of an AI agent’s decisions. These sce-
narios only represent a small subset of possible ones that
have been considered by the various works studied within
the purview of human-AI interaction.

In this paper, we present a more general version of the
human-aware AI interaction framework (Figure 1). GHAI
will not only allow for scenarios where the human may be an
actor but also introduce the notion of a task model M∗ that
captures the true joint task specification of both the human
and AI agent. Moreover, we will consider each agent’s (i.e.
human or the AI agent) perception of the true combined task,
which is independent of their beliefs about the other agent’s
perception of it. This allows us to capture interaction sce-
narios where one of the agents may choose to correct the
other agent’s beliefs about their task models. With the basic
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framework in place, we will see how the primary interaction
facilitated by the various works is manifestation of either
a model-communication behavior or a model-following be-
havior made possible by the use of the various mental mod-
els that are part of the framework.

This paper brings together works from various com-
munities that are studied under different problem frame-
works including human-aware planning, human-AI cohabi-
tation, human-robot interaction, human-in-the-loop ML, and
human-AI symbiosis. The works considered here look at
facilitating a diverse set of interactions, including explana-
tion, teaming, teaching, and debugging, and have been pre-
sented in forums like CHI, HRI, ICAPS, IJCAI, ICML, and
HCOMP. By bringing together this rich and varied body of
works under a single umbrella, we highlight the centrality of
the role played by mental models in the context of human-AI
interaction and suggest direction.

Generalized Human-Aware Interaction
In this section, we describe the basic interaction framework
that we will be leveraging to analyze the works that we are
considering in this paper. The Generalized Human-Aware
Interaction builds on earlier work done within the context of
human-aware planning [2], that was introduced to character-
ize interpretable behavior generated in the context of a plan-
ning agent trying to generate behavior in the presence of a
human observer. The framework allowed the agent to lever-
age human’s expectations about the agent in its decision-
making process, by capturing these expectations in the form
of a mental model that the human could be thought to as-
cribe to the agent. Unfortunately, the existing human-aware
planning framework is insufficient to explain the wider land-
scape of works done in the area of human-AI interaction. So
in this paper, we introduce Generalized Human-Aware Inter-
action (GHAI) that significantly expands the framework in
multiple dimensions to explain and capture the extant liter-
ature. Figure 1 presents a diagrammatic overview of GHAI
and in the rest of the section, we will provide an overview of
the various components of the system.

Agents– Our central modeling objective is to capture the
interaction between a human denoted by H and AI agent de-
noted by R (standing for robot, which we use in a more gen-
eral sense). While our framework can be extended to cases
when we have multiple humans and multiple AI agents, we
will focus on this dyadic interaction to allow for more con-
cise exposition. Unlike previous frameworks, we place no
restrictions on either the roles played by the agents in the
context of the interaction, nor any restrictions on how the
objectives of each agent may or may not be related.

Model– The central tool we will be using to capture both
the agent decisions and agent’s expectations from others,
will be a task model. A task model (usually denoted as M·

·)
is any mathematical model that encodes among other things,
an entities beliefs about task objectives, state of the world
and how the world may evolve on its own or in response to
an agent action. There exist a wide variety of options for
what the models might be (for example it may be MDPs [3],
differential system equations or symbolic models like PDDL

[4]), but for the purposes of this paper, their exact form is ir-
relevant. We only require that the models used by an agent
is in a form that they can use to derive the required decision
or expected decisions. As apparent from Figure 1, GHAI
consists of interaction between multiple models. For each
individual model, we consider that we have to talk about
the entity the model is ascribed to (i.e., the entity that is be-
ing described by the model) and the entity that the model
belongs to (i.e., the entity that is using the model). In partic-
ular, we are interested in three entities, the two agents (de-
noted as H and R) and the true ground truth task (denoted
with ∗). We will be using the superscript to denote the en-
tity described by the model and the subscript will describe
the entity that the model belongs to. As additional naming
convention, we will use lowercase in the case of subscripts
and drop it completely when both superscript and subscript
matches. In particular, we only need to consider the follow-
ing models.

Task models M∗
· – This model is meant to capture the

entirety of the task. As such it consists of all of the actions,
objectives, preferences of both agents and additional facts
about the world state that may not fall into the purview of
the individual agent models. In this class, we have three
specific models to consider. The ground truth model M∗ (
same as saying M∗

∗) that is unknown to either of the agents,
that captures the true objective and dynamics of the task.
This model could be thought of as belonging to nature or
to the true task-specifier that is not directly engaging in the
interaction. Next we have the task model maintained by each
of the agents (M∗

r and M∗
h). These models can be thought

of as the union of their beliefs about their own model (will
be covered later) and their beliefs about what the true model
of the other agent should be and any additional task facts.

Model of each agent MR and MH– This is the model
each agent ascribes to themselves. This determines what ac-
tions each agent believes they could perform and the objec-
tives and preferences they are trying to satisfy. These models
are also part of each agent’s beliefs about what the true task
model is, i.e., MR is part of M∗

r and MH is part of M∗
h.

One agent’s model of the other MR
h and MH

r – These
consist of what one agent believes the model of the other
agent is, i.e, MR

h is the human’s belief about MR, and MH
r

is the AI agent’s belief about MH . Note that we don’t ex-
pect these models to be same as what each agent thinks the
true capabilities and objectives of the other agent may be.
For example, from the perspective of the AI agent, what the
AI agent thinks the human capabilities and objective should
be (as encoded in M∗

r) need not to be the same as what the
AI agent thinks the human ascribes to themselves. These
models capture the theories of mind captured by each agent.

These are all models we will need to consider to describe
the space of works and various challenges related to human-
AI symbiosis. One could of course consider additional mod-
els by including more nested beliefs, but in most practical
scenarios people generally do not consider too many levels
of nesting in their reasoning [5] and as we will see from our
survey most existing works tend to avoid such nesting too.
Next we will move onto the various decisions that may be
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derived from these various models.
Decisions We will generally denote decisions as π· with

the subscript corresponding to the model from which it is
derived. Again, we will not limit ourselves to a specific de-
cision type and depending on the exact problem the space
of decisions could vary from single shot labels one may as-
sociate with a classification task to a policy to be carried
out by an embodied agent. In some cases, there might also
be multiple possible decisions that may be allowed by the
model (referred to as valid decisions) and in these cases the
model may also enforce an ordering among the possible de-
cisions. We will refer to a decision as being optimal for a
given model if there exist no other decision that may be pre-
ferred over the given one. The various decisions, we will
consider in GHAI setting include,

Decisions made by the actor πMR/H – These are the de-
cisions made by each agent to be carried out in the world
(so these come into play when the agent is an actor). These
decisions are primarily generated by using MR/H , but de-
pending on the scenario, they may also consider their belief
about the other agent’s task model in their decision.

The agent belief about the decision made by the other
agent actor πMR/H

h/r

– These are the decisions that an agent

might ascribe to the other agent that is acting. They are
primarily derived using their beliefs about the other agent
(MR

h or MH
r ).

Landscape of Human-AI Symbiosis
The models described in the previous section could come
into play in human-AI interaction in various roles. In partic-
ular, one can see the models being used in two critical ways,
namely, to drive a model-communication behavior wherein
one of the agent uses it’s beliefs about the task to mould the
belief of the other agent or to drive a model-following behav-
ior wherein the agent chooses behaviors that considers the
beliefs of the other agent. While previous works in human-
aware AI have noted limited forms of such behavior [6], our
focus on the larger landscape of human-AI interaction al-
lows us to view these behavioral patterns in a much more
general way. Thus we will try to categorize and analyze the
works done in this space along these two dimensions. In
the case of model-communication we will further break the
works down based on the source of communication, i.e., is
the AI-system trying to communicate to the human (thus the
information originates from M∗

r) or is the human trying to
communicate to the AI-system (thus the information orig-
inates from M∗

h). In the case of communication we will
consider both explicit communication where the agents are
directly providing model information or may engage in im-
plicit communication where the agent tries to influence the
other agent’s beliefs through their choice of behavior. Note
that these categories aren’t mutually exclusive and as we will
see many works in this space support behavior from multiple
categories.

Model Information from AI Agent’s End (M∗
r)

In this section, we have works that mostly use the models
from the right side of Figure 1 (AI mental models) to update

models held by the human. For this we start with model in-
formation from M∗

r that includes both their own AI model
and their beliefs of the other agent true model. Within this
category, we can further categorize works based on the hu-
man models that will be updated (i.e., MR

h or MH ) and
whether or not the AI agent makes use of a mental model of
the human (MH

r ) to generate the required information (see
the summary in Table 1).

Updating MR
h The human uses MR

h to make sense of the
AI’s decisions. So if the AI’s model is different from what
the human believes of them, this can result in the human
finding the AI behavior incomprehensible or surprising [7].
For this reason, when the AI agent needs to ensure that the
human is able to correctly evaluate AI decisions, it could
use information from M∗

r to update MR
h , either implicitly

or explicitly.
Examples of implicit model communication, include leg-

ible behavior generation or transparent planning which en-
ables the human collaborators to infer the goal purely from
the agent behavior [8, 9, 10, 11]. Implicit communication
can also be used to obfuscate the plans and objectives of
the AI agents to protect its privacy from adversarial entities
[12] or to synthesize behaviors that are simultaneously leg-
ible to friendly entities and obfuscatory to adversarial ones
[13]. The AI agent can also update MR

h to inform the hu-
man about its limitations, by implicitly communicating its
incapabilities through showing how and why it is unable to
accomplish its current objectives [14]. It can also use non-
verbal cues and feedback to signal how it expects the hu-
man to act next to communicate their preferences more ef-
fectively [15].

On the other hand, one of the common cases where ex-
plicit communication is used to update MR

h is in the context
of explanations. The explanation may involve analyzing and
explaining the details of failures and errors [16]. Such model
updates can be good for debugging and troubleshooting pur-
poses. The explanation can also solve the root cause of in-
explicable behavior, by reconciling the difference between
MR

h and AI model MR until the behavior becomes expli-
cable to the human [17, 18, 19, 20, 21], or update MR

h until
it can support aligned behavior (to be covered in detail later)
[22, 23]. Also, if the behavior expected by the human is
infeasible, the explanation updates the model by expressing
incapability. This can be done by presenting unsolvability
cores for specific behaviors [24, 25, 26, 27]. In the case of a
joint workspace where both the human and robot acts, com-
municating the policy can update the human model of AI
agent MR

h for better cooperation [28].

Updating MH In this case human is an actor and the
robot is trying update the human’s model with what they
believe to be information about the true underlying task.
This update can again happen implicitly or explicitly. An
example of implicit model update is when the robot makes
a serendipitous plan to make the task easier for the human
[29]. Explicit model updates happen in cases like deci-
sion support systems such as RADAR where the human-
decision maker may be provided the previously unknown
task information to aid their decision-making process of sin-

3



Table 1: Summary of the various aspects that come into play in
cases where model information is coming from M∗

r

References Model information from M∗
r

MH
r Used Updating MH Updating MR

h

[8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19,
22, 23, 24, 25, 26, 27,
28, 21]

✗ ✗ ✓

[35, 2, 20] ✓ ✗ ✓

[34] ✗ ✓ ✓

[29, 30, 31, 32, 33] ✓ ✓ ✗

[37] ✓ ✓ ✓

gle [30, 31, 32] and multiple [33] humans. It is also possi-
ble that the AI agent may be trying to update both MR

h and
MH . This might be the case in joint workspaces where the
AI agent needs to both communicate its intentions and ac-
tions to update MR

h and express what it expects the human
to do and thus update MH [34].

Use of MH
r Here we will look at some works that allow

the AI agent to use it’s mental model of the human when
selecting the information to be provided. This includes both
cases where the AI system is trying to update MR

h or MH .
The former corresponds to cases when the behavior (implicit
update) or explanation (explicit update) is personalized to
the human model and preferences. Examples include pro-
viding faithful and customized explanations of a black box
classifier that accounts for the fidelity to the original model
as well as user interest [35], explanations expressed in the
human’s vocabulary [36], or choosing explanation based on
the human’s preference to the type of information [20].

All works discussed above that allow for the update of
MH use MH

r as basis for the AI agent to decide what infor-
mation to provide to the human. However it is worth noting
that all the works discussed here implicitly assume that the
AI agent’s belief about the human model is the same as the
human’s own model, i.e., MH

r is same as MH .
There might also be cases where the AI system may be

trying to update both MH and MR
h while Using MH

r . One
example is the AI task allocation system AITA [37] that
uses a negotiation based algorithm to fairly allocate different
tasks to humans and giving contrastive explanation (using
MH

r ) to update both MH and MR
h , where MR

h captures
team performance and constraints.

Model Information from Human’s End (M∗
h)

In this section, we will consider works consider the use of
the left side of Figure 1 (Human mental models) to update
AI agent models. Thus, we have model information coming
from M∗

h that is used to update MR, MH
r , or both, and the

human might use MR
h to select this information (Table 2).

Updating MR First we will consider works that use
model information and inputs from human models to build,
update and improve AI agent model MR. The challenge
tackled by works that allow for such model updates is not

only to facilitate the update of MR but also in deciding
how and when to use the model information from M∗

h [38].
One common example is the problem of crowdsourcing
task information from a group of people to create a more
accurate task model for a single shot machine learning
task (e.g. systems like Crowdsynth and CrowdExplorer)
[39, 40, 41], and the challenge here would be to identify
the most effective way to collect the information to learn
the task [42, 39]. Other works have also looked at using
similar settings to collect information about more complex
tasks including planning [43]. Model information from, and
decisions made using M∗

h, could also be used indirectly to
detect limitations and errors in the AI agent model MR,
which can then be updated. Thus the information from M∗

h

is used to troubleshoot and then update the model MR.
For instance, works have looked at analyzing how human
and machine decisions differ for the same problem and
using that information to update the AI model. [44] looked
at using such an approach to improve the effectiveness of
recidivism prediction, and [45] also looks at improving the
AI systems performance by troubleshooting the systems
failure, but performs this analysis and model update itera-
tively. Furthermore, the model information from M∗

h can
be in the form of an advice or demonstration to the AI agent
to update MR [46, 47, 15, 48].

Updating MH
r The AI agent can also use the input and

information from human M∗
h to make and refine the model

they ascribe to the human (MH
r ) [48, 49]. Examples of

this include cases where the AI agent uses the answers to
its questions to refine its understanding of the human model
MH

r [50], or when the AI agent use the human critiques
[31, 30, 33] and explanatory queries [32] raised by the hu-
man to update and refine MH

r .

Use of MR
h Now, we will look at works that expects the

human to use their mental model of the AI agent when
providing the information. This includes both cases where
the human information is used to update MH

r or MR. The
latter happens when the human is advising or teaching the
AI agent while considering MR

h . The human can explicitly
advise and give instruction to the AI agent by suggesting
actions that the AI agent should take while learning [46, 47],
or the human can use MR

h to implicitly teach the AI agent
through demonstration [15].

There might be cases where the human information is
used to update both MR and MH

r while using MR
h . Ex-

amples here include cases, where the human demonstration
is used to detect blind spots of both the AI agent and the
human. Here the demonstration is used by the AI agent to
update MR and MH

r , so it can hand off the task to the most
capable agent [48]. Another example includes the AI agent’s
use of human instructions to operate in open world scenarios
[49].

Model Following Behavior
While the previous section considered how the agents
could use communication to address or resolve potential
differences between models, in this section we will look
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Table 2: Summary of the various aspects that come into play in
cases where model information is coming from M∗

h

References Model information from M∗
h

MR
h Used Updating MR Updating MH

r

[50, 31, 30, 33, 32] ✗ ✗ ✓

[38, 39, 40, 41, 39,
43, 44, 45]

✗ ✓ ✗

[46, 47, 15] ✓ ✓ ✗

[48, 49] ✓ ✓ ✓

at how agents may choose decisions that take into account
multiple models. In particular, we will consider two
possible classes of model following behavior. In the first
case, called Multi-Model Alignment the agent chooses a
behavior or decision that is not only valid in one model, but
is also valid and even close to optimal in another model.
The second case being response-seeking behavior, wherein
the agent chooses behavior based on their beliefs about the
model of the other agent, so as to elicit a specific response
or behavior from the other agent. (see Table 3 as summary).

Multi-Model Alignment Current human-AI symbiosis
literature have considered multiple models with which the
agent could align it’s decisions.

M∗
r and MR

h – An example of such alignment in-
cludes the problem studied by [51]. Here the human is final
decision-maker and the AI agent is making recommendation
to the human. The human is expected to gradually form a
mental model of when the AI agent may fail (MR

h ), and the
AI agent can potentially align its recommendation with MR

h
to generate decisions that are easier for the human to accept
and thus optimizing for team performance. Additionally, if
M∗

r is updated overtime and can offer better accuracy, the
AI agent can align in recommendation while making a trade
off between accuracy and compatibility [52, 53]. Aligning
AI agent’s behavior to MR

h has also been investigated for
sequential decision-making problems under the umbrella of
explicable behavior generation [54, 55]. In these works, the
AI agent is the actor and when the two models M∗

r and MR
h

are different, the AI agent can choose to be explicable to the
human by choosing plans that match human’s expectation
rather that directly communicating any differences. One can
also try to balance between communicating the differences
and aligning with the models [22, 23].

M∗
r and MH

r – One example for need for such align-
ment occurs when the human is the actor and the AI agent
tries to come up with policies for the human. Here the AI
agent needs to consider potential human limitations includ-
ing sensor limitations to come up with policies that the hu-
man could execute while still maximizing its value in the
true model [56].

M∗
r and M∗

h – The AI agent and the human can both use
their beliefs about the true task model (which may contain
different information) to converge on a final decision that
agrees with both of these models. We will consider this as
a scenario where the decision is being aligned to both M∗

r
and M∗

h. One example of this is the AI-mix system that

Table 3: Summary of the various aspects that come into play in
scenarios involving model following behavior

Model Following Behavior

Multi-Model Alignment Response-Seeking Behavior

M∗
r & MR

h M∗
R & MH

r M∗
r & M∗

h M∗
h & MR

h MH
r

[51, 52, 53,
54, 55, 22,
23]

[56] [59] [57] [58, 28, 50]

uses the crowd suggestions (i.e. information coming from
M∗

h) and criticizes generated from a partial system model
(i.e. information that is part of M∗

r) to come up with a plan
that would be better than one that could have been generated
by either parties on their own.

M∗
h and MR

h – This includes scenarios in which the hu-
man uses the recommendations made by the AI for their own
task. As mentioned earlier, the human makes a mental model
of the AI agent’s error boundary that is built over time. Thus
the human is effectively aligning the decision they derive us-
ing M∗

h with the model MR
h when they accept the AI agent

recommendation they believe is more likely to be true [57].

Response-Seeking Behavior One scenario where such
behavior is used is in joint workspaces. In such cases, when
the AI agent comes up with its decisions, it must consider
the model they ascribe to the human MH

r to come up with
potential coordination strategies. For example, a robot can
employ human motion prediction in conjunction with a com-
plete, time-optimal path planner to execute efficient and safe
motion in a shared environment [58] or jointly reasoning
about policy communication and acting in a collaborative
manner [28]. Another work that falls in this category is [50],
where the AI agent uses MH

r to come up with the right ques-
tions to further refine the model they ascribe to the human.

Gaps in Current Literature and Discussion
In this section, we analyze the gaps in the current literature
identified by our framework and how the framework con-
nects to some of the other aspects of human-AI interaction
including trust, longitudinal interaction and possible differ-
ences in inferential capabilities of humans and AI agents.
Through this section we hope to provide a brief sketch on
some potential future directions for research in human-AI
interaction in terms of the characterization of the landscape
provided here.

Missing Interactions
First we will consider the parts of the interactions that have
received less attention in the current literature and possible
opportunities that are being overlooked. One salient obser-
vation we can make about the current landscape of work is
the focus on settings that only support flow of model infor-
mation from one side to be used to update the other side.
Very few current works (for example [30, 32, 31, 33]) as-
sume the possibility that both agents may have information
to provide to the other agent. Arguably, this would be closer
to real-life settings and an aspect that may become more ap-
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parent as we start allowing for longitudinal and iterated in-
teraction. In fact we would argue that the works that do sup-
port bidirectional communication are the ones that consider
a form of iterative interaction. We will go over longitudinal
and iterated interaction in a separate discussion section.

As we also go over the works in the space, we also see
some recurring assumptions about the models. For exam-
ple, most of the works consider that the model of an agent
ascribed to the other agent MH/R

r/h is the same as the true
task model they ascribe to the agent (i.e. it coincides with
the model information they ascribe to the other agent as part
of M∗

r/h). Additionally, many of the works assume that the
update of one agent’s mental model of the other agent will
also cause the agent to update what they believe the true task
model of the other agent should be, for example updating
MH

r causes the robot to update M∗
r . However, this assump-

tion need not always hold and we could have scenarios that
allow for the fact that some agents may believe that the other
agent is misinformed about their own task model, an aspect
that could also play a role in bidirectional and iterative com-
munication between the agents.

Another aspect of under studied aspect of human-AI in-
teraction relates to the model following behavior. In partic-
ular for multi-model alignment, there are no existing works
that allow for the possibility that human would try to gener-
ate behavior that involves MH and MH

r . It is easy to see
why people may have overlooked this problem as in such
cases the human is trying to accommodate for AI agent’s
beliefs. However the systems might need to allow for such
allowances to accurately capture human behavior in cases
where human is aware of some limitation of the AI agent or
know that the AI agent isn’t aware of some aspects of the
human model.

Bidirectional Communication and Longitudinal
Interaction
As mentioned earlier, we can see that most of the works
in this area focus on one shot interaction or limit model
updates to one direction. So, they assume the implicit or
explicit model information from one model can result in
the update to the other model. Many of the works that
consider bidirectional updates such as [30, 32, 31, 33]
focus on decision-support systems where the human is the
final decision-maker. Such cases allow for the fact that the
human could potentially reject explanations provided by
the AI system or could raise explanatory queries that may
reveal some previously unspecified preferences. Another
work that has bidirectional update is [15] which considers
the inverse of the previous setting. In this work, the robot
is the final actor and it asks help from the human to update
MR but does so by helping human build a more accurate
MR

h so the human can provide more helpful information.
Both of these works present a limited form of interactive
setting, wherein the human and AI agent converge to a
final decision over a number of different iterations. Though
one would ideally want to see systems that go beyond just
these limited iterative setting and consider truly longitudinal
interaction, where the human-AI collaboration may extend

over a longer period of time that may cover multiple tasks.
Here the results of previous interaction may influence and
direct the form of future collaborations. Unfortunately, there
aren’t works that can support such forms of interaction. In
fact one crucial aspect we will need to better model to allow
for such interaction would be an effective way to model
trust between the agents [60, 61].

Trust in Human-AI Interaction
In longitudinal interaction, the exact model update to be pro-
vided can also depend on the level of trust. For instance, the
validity of the assumption that updates to MR

h , will get re-
flected in M∗

h depends on the human trust in the AI agent
and their willingness to comply with the AI agent. Thus, if
the human trust is low, then the difference between M∗

h and
MR

h may lead the human to think that the AI agent misun-
derstands the task. As a result, the AI agent’s decision to
provide model updates or perform model alignment should
also consider the human’s level of trust and it’s effect on re-
liance and compliance from the human’s end [62]. Further-
more, one could also have cases where if the human’s trust
is too high, they may accept information from AI agent and
update their model when they shouldn’t [63]. All of these
point to the critical role trust plays in the context of lon-
gitudinal interaction. Ideally one would want the choice for
when the AI agent should provide model information or per-
form model following behavior and when they shouldn’t, to
be driven not only by the human’s trust level but also based
on the possible effects the AI agent’s choices may have on
the human trust [62]. All of this focuses on the human’s trust
and how they determine their reception to the AI agent’s ac-
tions, one would also want to develop a similar mechanism
at the AI agent’s end to decide when they should accept in-
formation or decide to rely on the human.

Knowledge vs. Computational Capability
The majority of the works covered in this paper consider that
the potential source of disagreement between the human and
the AI agent about any aspect of the problem stems from a
purely epistemic or knowledge difference between the corre-
sponding models. However, as one considers more complex
problems, an equally relevant aspect becomes the agents
ability to effectively reason with the given models. After all,
humans are best captured computationally as bounded ratio-
nal agent and even if they share the same model information
the human and AI agent may come to differing decisions.
While there are some preliminary works that tries to address
this asymmetry most of them are in their infancy. One group
of work try to use simplified model information or decisions
that are easier for people to follow (examples include [64],
[19]). Another set of works tries to build proxy models that
tries to predict how human’s may react to particular model
update or aligned behavior (examples include [54], [65]).

This brings us to the end of our paper. Through the in-
troduction of the generalized human-aware AI interaction
framework, we not only hope to introduce a tool to bet-
ter understand the current landscape of works dealing with
human-AI interaction, but also a way to identify potential
limitations of current work and future research directions.
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