
The AAAI 2023 Workshop on Representation Learning for Responsible Human-Centric AI (R2HCAI)

Temporal Supervised Contrastive Learning
with Applications to Tabular Time Series Data

Shahriar Noroozizadeh1 Jeremy C. Weiss2 George H. Chen1

1 Carnegie Mellon University 2 National Library of Medicine
snoroozi@andrew.cmu.edu, jeremy.weiss@nih.gov, georgechen@cmu.edu

Abstract
We propose a contrastive learning framework for time series
data, where each time step has its own classification label and
is mapped to a point in an embedding space. This framework
has the following properties: (1) nearby points in the embed-
ding space have similar predicted class probabilities, (2) ad-
jacent time steps of the same time series map to nearby points
in the embedding space, and (3) time steps with very different
raw features map to far apart regions of the embedding space
even if these two time steps have the same classification la-
bel. Whereas properties (1) and (2) are standard, including
property (3) is novel and is achieved using a nearest neigh-
bor pairing mechanism in the raw feature space. We demon-
strate our framework on tabular time series data: on a syn-
thetic dataset with ground truth embedding space structure,
our method consistently recovers the structure across experi-
mental repeats whereas baselines do not; on two real clinical
datasets, our method achieves competitive accuracy scores.
Ablation studies reveal the importance of including the near-
est neighbor pairing mechanism.

1 Introduction
In recent years, many advances in representation learning
have been in the paradigm of contrastive learning (e.g.,
Oord, Li, and Vinyals (2018); Chen et al. (2020a,b)), which
aims to learn an embedding representation of raw data where
“similar” data points have embeddings that are close by to
each other whereas “dissimilar” data points have embed-
dings that are far apart. The goal is to have the embedding
space capture interesting problem-specific semantic struc-
ture. While contrastive learning has typically been stated in
the unsupervised setting, recently Khosla et al. extended it
to the classification setting to obtain supervised contrastive
learning (SCL) (Khosla et al. 2020).

In this paper, we extend SCL to incorporate temporal dy-
namics, yielding a framework we call TEMPORAL-SCL.
Our framework learns an embedding representation of time
series at the individual time step level (i.e., each time step
is mapped to an embedding vector) and has the following
properties:
• (Predictive) The time-dependent embeddings are helpful

in predicting a classification outcome, where we consider
both the static outcome case where a single time series is
associated with a single class, and the dynamic outcome

case where a single time series has time-varying classifi-
cation label.
• (Temporally smooth) When we look at the embeddings of

two adjacent time steps from the same time series, these
embeddings tend to be close by.
• (Diverse in capturing raw feature heterogeneity) Embed-

dings that correspond to very different raw inputs tend to
be mapped to different parts of the embedding space even
if they have the same classification outcome.

The first property is standard and says that making a
classifier that uses the embeddings to make predictions
should work well. This prediction is for a single time
step and corresponds to how prediction is done using self-
supervised (Chen et al. 2020a) or supervised contrastive
learning (Khosla et al. 2020). The second property has al-
ready appeared in self-supervised constrastive learning that
accounts for temporal dynamics (Dave et al. 2022) as well
as other non-contrastive learning temporal models (e.g., Lee,
Yoon, and Van Der Schaar 2019). However, to the best of our
knowledge, no existing contrastive learning approach yields
time-dependent embeddings that have all three of the above
properties.

The third property (diverse in capturing raw feature het-
erogeneity) is more nuanced. It says that parts of the embed-
ding space that are far apart could potentially still be asso-
ciated with the same classification outcome. In contrast, if
we only care about the first two properties and not this last
property, then the framework would not penalize a learned
embedding space in which all raw inputs of the same class—
regardless of whether they are actually close to each other
in the original raw feature space—get mapped to approxi-
mately the same embedding space location. Although such
a learned embedding space could be very helpful for classifi-
cation, it is not designed to distinguish between the different
patterns of raw inputs that lead to the same predicted class.

As a running example used throughout this paper, con-
sider a clinical application where the different time series
come from different patients, and each time series consists
of clinical features recorded over time (e.g., blood pressure,
temperature). Different time series could vary in length and
the time steps could be sampled irregularly (the time elapsed
between consecutive time steps need not be the same). In
the static outcome case, we aim to predict a patient’s out-
come (e.g., in-hospital mortality) at the final time step of

1

the patient’s time series. In the dynamic outcome case, we
aim to predict how a disease state for a patient changes
over time (e.g., progression of Alzheimer’s discretized into a
few stages). Importantly, discovering different patient mea-
surements that are indicative of the same outcome could be
helpful. The reason for this is that even though two patients
may have the same predicted outcome, how a clinician plans
treatment for them could differ if the two patients have very
different patient characteristics. For this sort of tabular clin-
ical data, there is no standard data augmentation procedure
commonly accepted as being sufficiently realistic for clini-
cal use. For this reason, we describe our contrastive learning
framework without data augmentation. For applications in
which data augmentation makes sense, adding data augmen-
tation to our framework is straightforward, as we point out
later.

Concretely, our main contributions are as follows:
• We propose TEMPORAL-SCL, which learns embeddings

that are predictive, temporally smooth, and diverse in
capturing raw feature heterogeneity. This last property is
achieved by including a nearest neighbor pairing mecha-
nism.
• To probe whether the learned embedding space captures

any sort of interesting phenomena in terms of raw fea-
tures, we present a clustering-based heatmap visualization
of TEMPORAL-SCL embeddings, relating the embedding
space to both raw features and to prediction outcomes.
Note that the clustering is done after and not as part of
learning a TEMPORAL-SCL model as to avoid imposing
strong assumptions such as there being a specific number
of clusters.
• In a synthetic dataset with known ground truth embedding

space structure, we show that TEMPORAL-SCL correctly
recovers the underlying structure (100% of the time across
10 experimental repeats with different random seeds). Re-
moving the nearest neighbor pairing mechanism results in
0% recovery. Meanwhile, all baselines fail to recover the
correct structure the majority of the time (across 10 exper-
iment repeats per baseline).
• In two real clinical datasets, we show that TEMPORAL-

SCL achieves competitive accuracy scores compared to
various baselines. We also show that removing the near-
est neighbor pairing mechanism results in accuracy scores
that either stay about the same or are worse, while result-
ing in significantly worse scores on unsupervised metrics.

2 Background
We state the time series prediction setup we consider (Sec-
tion 2.1) and then review supervised contrastive learning
(Khosla et al. 2020) (Section 2.2). Throughout the paper, for
any positive integer m, we denote [m] := {1, 2, . . . ,m}.

2.1 Problem Setup
Training data. We assume that the training dataset consists
of N different time series. We view each time series as a
single data point. For the i-th data point (with i ∈ [N]),
we observe Li time steps, where at each time step, we keep
track of a total of D features. Specifically, we denote the

i-th data point’s feature vector at time step ℓ ∈ [Li] (sorted
chronologically) as x

(ℓ)
i ∈ RD. Moreover, we also know

the actual times that the time steps correspond to, where we
denote the i-th data point’s time at the ℓ-th time step as t(ℓ)i ∈
R. This notation allows for some features to be static, i.e., a
feature could stay constant across time.

We further assume that we have ground truth information.
Specifically we assume that every time step of a time series
belongs to one of C different classes, i.e., the set of classes
is [C]. In the dynamic outcome case, where the classification
label varies over time, we assume that we know the classi-
fication label y(ℓ)i ∈ [C] for every data point i ∈ [N] for
every time step ℓ ∈ [Li]. For the static outcome case, we
only know the classification label at the final time step per
time series, i.e., we know y

(Li)
i ∈ [C] for all i ∈ [N]. At

earlier time steps, we set y(ℓ)i = “?” for all ℓ < Li, which
could be thought of as an additional “unknown” class.
Prediction task. Given a test time series, suppose that we
observe the feature vector x∗ ∈ RD at a single time step.
We aim to predict the target label y∗ ∈ [C] corresponding to
x∗. In the dynamic outcome setting, this target label is for
the same time step as x∗. In the static outcome setting, we
take the target label to be the label for the final time step in
the test time series.

We focus on this setup of predicting the classification out-
put for a single time step’s worth of information for simplic-
ity and also because it captures the extreme case of what is
possible: that a test time series just consists of one time step.
In a clinical setup, this could happen if a patient enters a
new hospital for which we see measurements of this patient
for the first time; the patient could have previously been at a
different hospital that we do not have data from.

2.2 Supervised Contrastive Learning (SCL)
SCL learns an embedding representation of the data so that
“similar” data points have embeddings that have higher co-
sine similarity compared to those of “dissimilar” data points.
Data points are “similar” if they have the same classifica-
tion label. As this framework was originally developed with-
out temporal structure, we drop superscripts previously used
to indicate dependence on time. For ease of exposition, we
present a simplified version of SCL that we call SIMPLE-
SCL, which does not use data augmentation (since our ex-
periments later will be on tabular data without data augmen-
tation).
Notation. We use f to denote the so-called encoder net-
work, where given any point x in the raw input feature space,
its embedding representation is f(x). This embedding rep-
resentation is constrained to be a d-dimensional Euclidean
vector with norm 1, also referred to as a hyperspherical em-
bedding. Thus, ∥f(x)∥ = 1. We denote this hyperspher-
ical output space as Sd−1 := {z ∈ Rd s.t. ∥z∥ = 1}.
For u,v ∈ Sd−1, the cosine similarity between u and v

is ⟨u,v⟩
∥u∥∥v∥ = ⟨u,v⟩, where ⟨·, ·⟩ denotes the Euclidean dot

product.
SIMPLE-SCL. We learn the encoder f using mini-
batch gradient descent. For a minibatch of B training

2

points x1, . . . ,xB with corresponding classification labels
y1, . . . , yB , we denote the embeddings of these points as
z1 = f(x1), . . . , zB = f(xB). Since we want points with
the same label to have high cosine similarity, we keep track
of which points have the same label. To do this, we let P(i)
denote the set of points with the same label as the i-th point,
excluding the i-th point:

P(i) := {j ∈ [B] s.t. yj = yi and j ̸= i}. (1)

Next, we define the following ratio:

Ψ(i, j; τ) :=
exp(⟨zi, zj⟩/τ)∑

k∈[B] s.t. k ̸=i exp(⟨zi, zk⟩/τ)
, (2)

where the constant τ > 0 is a user-specified hyperparameter.
The key idea is that if the i-th and j-th points have the same
label (i.e., j ∈ P(i)), then we want Ψ(i, j; τ) to be large: the
numerator being large means that cosine similarity ⟨zi, zj⟩
is large while the denominator provides a normalization to
ensure that Ψ(i, j; τ) ∈ [0, 1]. Then to encourage Ψ(i, j; τ)
to be large for all i ∈ [B] and j ∈ P(i), we can minimize
the loss

LSimple-SCL := −
∑

i∈[B] s.t. |P(i)|≥1

1

|P(i)|
∑

j∈P(i)

logΨ(i, j; τ).

(3)
The original SCL uses a loss of the same form but includes
data augmentation (see Appendix for details).

3 Method
We now present our proposed temporal variant of SCL
called TEMPORAL-SCL, which consists of three networks:
an encoder network f (maps a specific time step’s feature
vector to an embedding), a predictor network g (maps an
embedding to predicted class probabilities), and a temporal
network h (for encouraging temporal smoothness). We first
give an overview of these three networks (Section 3.1) prior
to describing how they are trained (Section 3.2). We then
describe a clustering-based method for visualizing learned
embeddings (Section 3.5).

3.1 Overview of Encoder, Predictor, and
Temporal Networks

Encoder network f . We aim to learn an embedding rep-
resentation of every time step of the different training time
series. Just as in Section 2.2, this amounts to learning an
encoder network f that maps from the raw feature vector
space (now for just a single time step) to the hyperspherical
space Sd−1. Since we now account for time steps, we add
superscripts: we let z(ℓ)i := f(x

(ℓ)
i) denote the embedding

of the i-th data point’s feature vector at time step ℓ.
Aside from using time steps, the major difference be-

tween TEMPORAL-SCL and SIMPLE-SCL is that for
TEMPORAL-SCL, feature vectors are considered similar if
they simultaneously have similar outcomes (i.e., classifica-
tion labels y

(ℓ)
i) and similar input feature vectors (unlike

with SIMPLE-SCL, where similarity is purely based on clas-
sification labels).

Predictor network g. As we want the learned embedding
space to be predictive of classification outcomes, we learn
a predictor network g that maps from the embedding space
Sd−1 to the space of probability distributions over C classes.
Temporal network h. To encourage two adjacent time steps
in the same time series x

(ℓ)
i and x

(ℓ+1)
i to map to embed-

dings z(ℓ)i and z
(ℓ+1)
i that are close to each other, we learn a

temporal network h that predicts how embeddings change
over time. For the i-th training data point, we define the
time duration δ

(ℓ)
i := t

(ℓ+1)
i − t

(ℓ)
i for ℓ ∈ [Li − 1]. Then

h takes as input the sequence (z
(1)
i , δ

(1)
i), . . . , (z

(ℓ)
i , δ

(ℓ)
i)

and outputs a prediction for z
(ℓ+1)
i . We ask that z

(ℓ+1)
i

and h
(
(z

(1)
i , δ

(1)
i), . . . , (z

(ℓ)
i , δ

(ℓ)
i)

)
be close (using squared

Euclidean distance loss). Thus, h aims to make the next
time step’s embedding predictable based on all previous
time steps and could be thought of as a regularization term.
A similar temporal smoothness regularization strategy was
used by Lee, Yoon, and Van Der Schaar (2019).

3.2 Overview of TEMPORAL-SCL Training and
Prediction

Training. We train the three networks of TEMPORAL-SCL
in three phases:

1. (Pre-training) We initialize the hyperspherical embed-
ding space by pre-training the encoder network f using
data at the individual time step level and SIMPLE-SCL
with cosine-similarity. Note that during this phase, we
do not model nor use temporal structure, and we effec-
tively treat the different time steps as separate. We ex-
plain this phase in more detail in Section 3.3, and our
experiments later show that this phase significantly im-
proves the model’s prediction accuracy.

2. (Joint optimization of encoder and temporal networks)
After pre-training the encoder f , we then jointly opti-
mize f and the temporal network h. This phase accounts
for temporal structure. Details of this phase are in Sec-
tion 3.4.

3. (Learning the predictor network) At this point, we treat
the encoder f as fixed, so we can compute all the training
embeddings at different time steps (the z(ℓ)i variables). In
the dynamic outcome case, we learn the predictor net-
work g by treating the z

(ℓ)
i variables as input feature

vectors and the corresponding y
(ℓ)
i variables as target la-

bels, minimizing cross-entropy loss. In the static outcome
case, we instead set the target label for z(ℓ)i to be the final
time step’s label y(Li)

i . As this phase amounts to standard
neural net classifier training with cross-entropy loss, we
do not discuss it in more detail.

Prediction. As mentioned in Section 2.1, at test time, we
are given a feature vector x∗ ∈ RD corresponding a single
snapshot in time. To make a prediction for x∗, we first com-
pute the embedding of x∗ given by z∗ := f(x∗). Then the
predicted class probabilities are precisely given by g(z∗).

3

3.3 Learning the Encoder Network in the
Pre-training Phase

We now explain how we modify SIMPLE-SCL to accommo-
date time steps and to encourage the learned embeddings to
be diverse in capturing raw feature heterogeneity. The latter
uses what we call a nearest neighbor pairing mechanism.

SIMPLE-SCL with time steps. To adapt SIMPLE-SCL to
the setting with time steps, we treat every time step of every
time series as its own “data point”. To avoid confusion as we
usually consider an entire time series to be a data point, we
instead call each time step’s data (x

(ℓ)
i , y

(ℓ)
i) to be a snap-

shot. Thus, we take the “training data” of SIMPLE-SCL to
be all the snapshots:

⋃N
i=1

⋃Li

ℓ=1{(x
(ℓ)
i , y

(ℓ)
i)}.

Nearest neighbor pairing mechanism. Whereas in our de-
scription of SIMPLE-SCL earlier (which did not have time
steps) that considered two points to be similar if they share
the same classification outcome, we now instead consider
two snapshots to be similar if they share the same classifi-
cation outcome and their raw feature vectors are “close to
each other”. We use a sampling approach to finding pairs of
snapshots that we deem similar:
1. Initialize the set of snapshot pairs to be empty: E ← ∅.
2. For each class c ∈ [C]:

(a) Let the set Ac consist of all snapshots whose label
is c.

(b) While |Ac| ≥ 2:
i. Let (x(ℓ)

i , y
(ℓ)
i) be a randomly chosen snapshot

from Ac.
ii. (Nearest neighbor search) Among all the other

snapshots in Ac, find the one whose feature vec-
tor is closest to x

(ℓ)
i (e.g., using Euclidean dis-

tance). Denote the resulting snapshot found as
(x

(ℓ′)
i′ , y

(ℓ′)
i′).

iii. Add the snapshot pair(
(x

(ℓ)
i , y

(ℓ)
i), (x

(ℓ′)
i′ , y

(ℓ′)
i′)

)
to E .

iv. Remove (x
(ℓ)
i , y

(ℓ)
i) and (x

(ℓ′)
i′ , y

(ℓ′)
i′) from Ac.

To sample a minibatch of B data points for minibatch gradi-
ent descent, where we assume that B is even, we randomly
choose B/2 pairs from the set E ; denote the set of these B/2
pairs as Ebatch. Note that the B/2 pairs in Ebatch correspond
to a total of B different snapshots; denote the set of these
B snapshots as Vbatch. Then the loss we use for minibatch
gradient descent during pre-training is

LSCL-snapshots := −
∑

((x
(ℓ)
i ,y

(ℓ)
i), (x

(ℓ′)
i′ ,y

(ℓ′)
i′))∈Ebatch

Γ((i, ℓ), (i′, ℓ′); τ),

where
Γ((i, ℓ), (i′, ℓ′); τ)

:= log

[
exp(⟨f(x(ℓ)

i), f(x
(ℓ′)
i′)⟩/τ)∑

(x
(ℓ′′)
i′′ ,y

(ℓ′′)
i′′)∈Vbatch

s.t. (i′′,ℓ′′)̸=(i,ℓ)

exp(⟨f(x(ℓ)
i), f(x

(ℓ′′)
i′′)⟩/τ)

]
.

Ablation. Later on in our experiments, we conduct abla-
tion experiments where we do not use nearest neighbor

pairing. The only change is that in step 2(b), steps i. and
ii. are replaced by randomly choosing two different snap-
shots (x(ℓ)

i , y
(ℓ)
i) and (x

(ℓ′)
i′ , y

(ℓ′)
i′) from Ac to pair up (e.g.,

uniformly at random).
Static outcome case. In the dynamic outcome case (i.e., the
classification outcome changes over time), we use the above
procedure as stated. However, in the static outcome case
(i.e., the classification label is for the final time step), dur-
ing the pre-training phase, we only use the snapshot corre-
sponding to the final time step per training time series. This
is because we are not sure of what the true labels should be
prior to the final time step, so for now we focus learning
the embeddings based on time steps where we are know the
labels.
Data augmentation. When data augmentation is available,
the above procedure can still be run as stated using an aug-
mented training dataset. For example, we can keep track of
what the original N raw time series are prior to any data
augmentation and per epoch, we use a different random aug-
mentation of every original training time series (and treat the
augmented set of N time series as a “fresh” set of training
data for that epoch). Of course, we could also do what is
done in the original SCL that further pairs up two random
augmentations of the same raw input (this would involve,
for each epoch, generating two random augmentations per
training time series). In fact, combining these two strategies
for contrastive learning on images has been previously done
(Dwibedi et al. 2021); however, this earlier work finds near-
est neighbors in the embedding space rather than the raw
feature space and has not been extended to variable-length
irregularly sampled temporal data like the tabular time series
data we experiment on later.

3.4 Joint Optimization of Encoder and Temporal
Networks

In the second stage of training a TEMPORAL-SCL model,
we jointly train the encoder and temporal networks by min-
imizing the overall loss

Loverall = LSCL-snapshots + αLtemp-reg, (4)

where Ltemp-reg is a temporal smoothness loss term (to
be defined shortly), and α ≥ 0 is a hyperparameter that
trades off between the two losses on the right-hand side.
Recall that for the i-th training data point, we pre-
viously defined the time duration δ

(ℓ)
i := t

(ℓ+1)
i −

t
(ℓ)
i for ℓ = 1, 2, . . . , Li − 1. Moreover, h takes as

input the sequence (z
(1)
i , δ

(1)
i), . . . , (z

(ℓ)
i , δ

(ℓ)
i) and out-

puts a prediction for z
(ℓ+1)
i . We ask that z

(ℓ+1)
i and

h
(
(z

(1)
i , δ

(1)
i), . . . , (z

(ℓ)
i , δ

(ℓ)
i)

)
be close in terms of squared

Euclidean distance, across all data points and time steps:

Ltemp-reg :=

1

N

N∑
i=1

1

Li − 1

Li−1∑
ℓ=1

∥∥h((z(1)i , δ
(1)
i), . . . ,(z

(ℓ)
i , δ

(ℓ)
i)

)
−z(ℓ+1)

i

∥∥2.
Static outcome case. Once again, in the dynamic outcome
case, we use the above procedure as stated. In the static out-

4

Figure 3.1: Heatmap showing how features (rows) vary across clusters (columns) for the sepsis cohort of the MIMIC dataset.
Heatmap intensity values can be thought of as the conditional probability of seeing a feature value (row) conditioned on being
in a cluster (column); these probabilities are estimated using test set snapshots. Columns are ordered left to right in increasing
fraction of test set snapshots that come from a time series that has a final outcome of death.

come case, for this joint optimization phase, we use all snap-
shots (unlike during pre-training); as a reminder, snapshots
that do not correspond to the final time step of a time series
has the classification label “?”. The idea is that now that we
are accounting for temporal structure, despite us not know-
ing the labels prior to the final time step, we still want to
encourage temporal smoothness of embeddings across time
steps.

3.5 A Clustering-based Approach to Visualizing
Embeddings

To find common patterns in the learned embedding space,
we cluster on the different snapshots’ embeddings (the z

(ℓ)
i

variables). We have found standard agglomerative cluster-
ing (Murtagh and Contreras 2012) to work reasonably well
here and this approach trivially allows the user to adjust the
granularity of clusters as needed, even from fitting the clus-
tering model once. The idea is that we start with every snap-
shot’s embedding as its own cluster and keep merging the
closest two clusters (e.g., using complete linkage to decide
on which two clusters are closest) until we are left with a
single cluster that contains all the snapshots’ embeddings.
In conducting this procedure, we make sure to store every
intermediate clustering result. Then the user could use our
visualization strategy (to be described next) with any inter-
mediate clustering result, ranging from fine- to coarse-grain
clusters.

To visualize any clustering assignment of the snapshot
embeddings (the clustering method need not be agglomer-
ative clustering), we make a heatmap inspired by Li et al.
(2020), where columns correspond to different clusters and
rows correspond to different features.1 The intensity value
at the i-th row and j-th column is the fraction of test set
snapshots that have the i-th row’s feature value among test
set snapshots in the j-th column’s cluster (i.e., a conditional
probability estimate of seeing a feature value given being in

1Note that we discretize continuous features into bins. This dis-
cretization is only used during visualization and not used when
training the TEMPORAL-SCL model.

a cluster). An example is shown in Figure 3.1; details on the
dataset used and model training are in Section 4.2. We show
the “top” 5 features, where we rank features based on the
maximum observed difference across clusters.2

From Figure 3.1, we can readily see how the features
vary across clusters. For example, higher values for AST,
lactate, ALT, and INR are associated with higher risk of
death, whereas lower values of bicarbonate are associated
with higher risk of death. There are two clusters that have
fraction of death close to each other (0.737 and 0.740) but
that have different patient characteristics (the biggest differ-
ence between the two clusters appears to be in lactate levels).

4 Experiments
We benchmark TEMPORAL-SCL on tabular time series
data: a synthetic dataset with known ground truth embedding
space structure (Section 4.1), and two standard real clinical
datasets for which the embedding space is unknown (Sec-
tion 4.2). No data augmentation is used. We also examine
how TEMPORAL-SCL works without pre-training and, sep-
arately, without nearest neighbor pairing.
Baselines. As baselines, we use logistic regression, an
LSTM (Hochreiter and Schmidhuber 1997), RETAIN (Choi
et al. 2016), Dipole (Ma et al. 2017), a BERT-based
transformer (Devlin et al. 2019), AC-TPC (Lee and Van
Der Schaar 2020), and SIMPLE-SCL (treating snapshots as
separate data points).
Experimental setup. For all datasets, we randomly split the
data into 60% training, 20% validation, and 20% test sets.
We train each method on the training set, tune hyperpa-
rameters based on the validation set, and report evaluation
metrics on the test set. Furthermore, we choose 10 different
random seeds to randomize the parameter initialization of
all the models evaluated as well as randomizing the train/-
validation/test sets for each experimental repeat. Details on

2Per row in the heatmap, compute the difference between the
largest and smallest intensity values across the row, and then rank
rows using these differences, where we keep rows that correspond
to the same underlying feature together.

5

training including hyperparameter grids are in the appendix.
Evaluation metrics. We use one-vs-rest area under the re-
ceiver operating characteristic curve (AUROC) and area un-
der the precision-recall curve (AUPRC). For the synthetic
data experiment, we also look at the fraction of experimen-
tal repeats that a method recovers the ground truth structure.

4.1 Synthetic Data
Data. We generate a 2D dataset where every time series has
exactly 3 time steps. For simplicity, we only consider the
static outcome case so that each time series has a single label
(one of two classes: red or blue). The points are all on a
2D circle, where the only four possible time series in the
embedding space are shown in Figure 4.1(a). For example,
one possible time series is “ → → ”. There are a total
of 10 true embedding locations (which could be thought of
as cluster centers). Note that we take the embedding space
and raw feature space to be the same. When we generate
synthetic time series, each point is based on one of the 10
true ground truth embedding locations with Gaussian noise
added. We randomly sample 200 of each of the 4 possible
trajectories so that we have a total of 800 time series. See
the appendix for details.
Experimental results. For all methods, we use a 3D em-
bedding space (despite the ground truth one being 2D) as
we found that all methods perform much worse when con-
strained to a 2D embedding space (we believe that this is
a special case of the more general phenomenon of over-
specification as documented by Livni, Shalev-Shwartz, and
Shamir (2014) that training neural networks larger than
needed is actually easier). Figure 4.1(b)-(d) shows the test
data projected onto the 3D embedding space learned by a
few methods. Note that the transformer’s embedding space
is not constrained to be on the unit hypersphere. We report
test set accuracy scores and how often each method recovers
all 10 clusters (across 10 experimental repeats; we only visu-
ally examine whether 10 clusters are clearly found and dis-
regard the precise location of the clusters) in Table 4.1. The
main finding from Table 4.1 is that while nearly all methods
achieve the same (best) accuracy scores, TEMPORAL-SCL
(the full version with pre-training and nearest neighbor pair-
ing) is the only method that recovers all 10 embedding space
clusters. More details, including visualizations of learned
embedding spaces of all methods, are in the appendix.

4.2 Real Clinical Data
Data. We use two standard datasets:
• MIMIC (static outcome case). We use time series data of

septic patients from the MIMIC-III dataset (v1.4) (John-
son et al. 2018). We follow the same procedure as done
by Komorowski et al. (2018) to identify 18,354 septic pa-
tients among which there is an observed mortality rate just
above 20% (determined by death within 48h of the final
observation y

(Li)
i = 1 or death within 90 days of the final

observation y
(Li)
i = 2).

• ADNI (dynamic outcome case). We also test our method
on the Alzheimer’s Disease Neuroimaging Initiative

Table 4.1: Synthetic data test set accuracy (mean ±
std. dev. across 10 experiments) and fraction of experiments
with correct embedding structure recovery.

Model AUROC AUPRC Recovery

Logistic Regression 0.902±0.010 0.900±0.003 0/10
LSTM 0.951±0.008 0.948±0.002 0/10

RETAIN 0.951±0.008 0.948±0.002 2/10
DIPOLE 0.951±0.008 0.948±0.002 3/10
AC-TPC 0.951±0.008 0.948±0.002 0/10

Transformer:BERT 0.951±0.008 0.948±0.002 1/10
SIMPLE-SCL 0.805±0.007 0.804±0.002 0/10

TEMPORAL-SCL (no pretrain) 0.950±0.009 0.944±0.004 2/10
TEMPORAL-SCL (no NN pairing) 0.951±0.008 0.948±0.002 0/10

TEMPORAL-SCL (full) 0.951±0.008 0.948±0.002 10/10

(ADNI) dataset (Petersen et al. 2010). This dataset con-
sists of a total of 11,651 hospital visits from 1,346 patients
which tracks the progression of Alzheimer’s disease via
follow-up observations at 6 month intervals.

Experimental results. We report the prediction accuracy of
the different methods evaluated in Table 4.2. For the MIMIC
dataset, TEMPORAL-SCL has prediction accuracy on par
with the best performing baselines. For the ADNI dataset,
TEMPORAL-SCL also shows competitive results among the
top-performing experimented baselines. The earlier heatmap
visualization (Figure 3.1) is for the full TEMPORAL-SCL
model trained on MIMIC. For the sepsis cohort in MIMIC,
we observe that our clusters have a high correlation with in-
creasing risk of death where for higher mortality risk we ob-
serve abnormal AST, Lactate, ALT, Bicarbonate, and INR
values. Our findings align with the sepsis clinical litera-
ture (Nesseler et al. 2012; Villar, Short, and Lighthall 2019)
where these biomarkers have correlation with increased pa-
tient mortality. In addition, we observe that for higher risk
columns with similar death rates, features are more hetero-
geneous which highlights our model’s capability in going
beyond risk stratification and providing clinical insight for
identifying phenotypes that have homogeneous risk. A more
complete version of this heatmap (including all the features),
a similar heatmap visualization for ADNI, and details on
clustering are in appendix. For TEMPORAL-SCL, exclud-
ing pre-training results in a large drop in accuracy. If we in-
stead exclude nearest neighbor pairing, we see that accuracy
is largely the same for MIMIC but is noticeably worse for
ADNI. In the appendix, we also show that using unsuper-
vised metrics, the full TEMPORAL-SCL significantly out-
performs the variants without pre-training and, separately,
without nearest neighbor pairing.

5 Discussion
Our extension of supervised contrastive learning to handle
temporal dynamics crucially uses nearest neighbor pairing
to encourage embeddings to be far apart when the raw inputs
are far apart, even if these raw inputs have the same classi-
fication label. Better understanding when and why nearest
neighbor pairing works in different applications would be
an interesting direction for future research. Meanwhile, for

6

(a) Ground truth (b) Transformer
(c) TEMPORAL-SCL (no NN

pairing) (d) TEMPORAL-SCL

Figure 4.1: Synthetic dataset: (a) the only four possible time series trajectories (each true embedding state has a unique color
and shape combination), where every time series has 3 time steps, and each time series belongs to one of two classes (red
or blue); (b) unsuccessful recovery of the structure by the transformer model; (c) unsuccessful recovery by TEMPORAL-SCL
when nearest neighbor pairing is not used; and (d) the correct structure recovered by the full TEMPORAL-SCL.

Table 4.2: Real data test set accuracy (mean ± std. dev. across 10 experiments).

Model
MIMIC dataset ADNI dataset

AUROC AUPRC AUROC AUPRC

Logistic Regression 0.745±0.003 0.499±0.008 0.845±0.006 0.676±0.009
LSTM 0.767±0.003 0.509±0.005 0.947±0.002 0.823±0.005

RETAIN 0.730±0.010 0.431±0.006 0.884±0.012 0.795±0.016
DIPOLE 0.767±0.004 0.453±0.003 0.958±0.006 0.824±0.009
AC-TPC 0.703±0.006 0.432±0.007 0.839±0.013 0.681±0.017

Transformer:BERT 0.769±0.005 0.509±0.003 0.959±0.002 0.922±0.003
SIMPLE-SCL 0.744±0.003 0.486±0.003 0.902±0.024 0.796±0.020

TEMPORAL-SCL (no pretrain) 0.725±0.042 0.471±0.001 0.867±0.035 0.766±0.050
TEMPORAL-SCL (no NN pairing) 0.767±0.005 0.509±0.003 0.894±0.062 0.807±0.045

TEMPORAL-SCL (full) 0.763±0.001 0.510±0.002 0.961±0.001 0.867±0.006

simplicity, in this paper we only considered making predic-
tions for a single time step’s worth of information at a time.
Future work could consider making predictions for variable-
length time series. Lastly, we point out that our heatmap vi-
sualization could extend to video data (each snapshot is for a
video frame) if the rows are replaced by discrete visual con-
cepts (e.g., faces, cats, etc) that could be detected as being
present or not in an image.

References
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020a.
A simple framework for contrastive learning of visual repre-
sentations. In International Conference on Machine Learn-
ing.
Chen, X.; Fan, H.; Girshick, R.; and He, K. 2020b. Improved
baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297.
Choi, E.; Bahadori, M. T.; Sun, J.; Kulas, J.; Schuetz, A.;
and Stewart, W. 2016. RETAIN: An interpretable predic-
tive model for healthcare using reverse time attention mech-
anism. In Advances in Neural Information Processing Sys-
tems.
Dave, I.; Gupta, R.; Rizve, M. N.; and Shah, M. 2022.

TCLR: Temporal contrastive learning for video representa-
tion. Computer Vision and Image Understanding.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the North Amer-
ican Chapter of the Association for Computational Linguis-
tics.
Dwibedi, D.; Aytar, Y.; Tompson, J.; Sermanet, P.; and Zis-
serman, A. 2021. With a little help from my friends: Nearest-
neighbor contrastive learning of visual representations. In
International Conference on Computer Vision.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation, 9(8): 1735–1780.
Johnson, A. E.; Stone, D. J.; Celi, L. A.; and Pollard, T. J.
2018. The MIMIC Code Repository: Enabling reproducibil-
ity in critical care research. Journal of the American Medical
Informatics Association, 25(1): 32–39.
Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola,
P.; Maschinot, A.; Liu, C.; and Krishnan, D. 2020. Super-
vised contrastive learning. In Advances in Neural Informa-
tion Processing Systems.
Komorowski, M.; Celi, L. A.; Badawi, O.; Gordon, A. C.;
and Faisal, A. A. 2018. The artificial intelligence clinician

7

learns optimal treatment strategies for sepsis in intensive
care. Nature Medicine, 24(11): 1716–1720.
Lee, C.; and Van Der Schaar, M. 2020. Temporal phenotyp-
ing using deep predictive clustering of disease progression.
In International Conference on Machine Learning.
Lee, C.; Yoon, J.; and Van Der Schaar, M. 2019. Dynamic-
DeepHit: A deep learning approach for dynamic survival
analysis with competing risks based on longitudinal data.
IEEE Transactions on Biomedical Engineering, 67(1): 122–
133.
Li, L.; Zuo, R.; Coston, A.; Weiss, J. C.; and Chen, G. H.
2020. Neural Topic Models with Survival Supervision:
Jointly Predicting Time-to-Event Outcomes and Learning
How Clinical Features Relate. In International Conference
on Artificial Intelligence in Medicine, 371–381. Springer.
Livni, R.; Shalev-Shwartz, S.; and Shamir, O. 2014. On the
computational efficiency of training neural networks. Ad-
vances in Neural Information Processing Systems.
Ma, F.; Chitta, R.; Zhou, J.; You, Q.; Sun, T.; and Gao,
J. 2017. Dipole: Diagnosis prediction in healthcare via
attention-based bidirectional recurrent neural networks. In
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.
Murtagh, F.; and Contreras, P. 2012. Algorithms for hierar-
chical clustering: an overview. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery.
Nesseler, N.; Launey, Y.; Aninat, C.; Morel, F.; Mallédant,
Y.; and Seguin, P. 2012. Clinical review: the liver in sepsis.
Critical Care, 16(5): 1–8.
Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Representation
learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748.
Petersen, R.; Aisen, P.; Beckett, L.; Donohue, M.; Gamst,
A.; and Harvey, D. 2010. Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI). Neurology, 74(3): 201.
Seymour, C. W.; Kennedy, J. N.; Wang, S.; Chang, C.-C. H.;
Elliott, C. F.; Xu, Z.; Berry, S.; Clermont, G.; Cooper, G.;
and Gomez, H. 2019. Derivation, validation, and potential
treatment implications of novel clinical phenotypes for sep-
sis. JAMA, 321(20): 2003–2017.
Villar, J.; Short, J. H.; and Lighthall, G. 2019. Lactate pre-
dicts both short-and long-term mortality in patients with and
without sepsis. Infectious Diseases: Research and Treat-
ment, 12: 1178633719862776.

8

A Appendix

A.1 Baselines

In this section we describe the baselines used for our exper-
iments.
Logistic regression. For this simple baseline, our training
data has each timestep as an individual datapoint with the
true label of each timestep being the final timestep outcome
of its corresponding sequence. We run logistic regression on
raw features of every timestep in the training set.
Long short-term memory (LSTM). We train a multilayer
LSTM on the sequences of the raw features in the training
set and their corresponding outcome label and take the hid-
den layer of the final timestep and pass it through a linear
layer to predict the outcome of the corresponding sequence.
After the training is completed, we run our model on the val-
idation set and get the probability of the positive outcome
(not surviving) for each sequence.
Actor-Critic Temporal Predictive Clustering (AC-TPC).
Lee and Van Der Schaar (2020) proposed an actor-critic ap-
proach from reinforcement learning for temporal predictive
clustering (AC-TPC) where each cluster consists of patients
with similar future outcomes of interest. In this approach
an RNN-based encoder and multi-layer perceptron predictor
network are first trained to initialize time series embeddings.
After initialization, a selector network and embedding dic-
tionary are jointly optimized with the encoder and predic-
tor networks to obtain a representative embedding of each
timestep for the outcome in the subsequent timestep. At in-
ference, at each timestep, the encoder maps a sequence into a
latent embedding, and the selector network assigns a cluster
to this latent embedding. The centroid of the cluster assigned
to the latent embedding which is stored in the embedding
dictionary is then used by the predictor network to predict
the future outcome of interest.
Reverse Time Attention Model (RETAIN). Choi et al.
(2016) proposed an interpretable predictive model for
healthcare using reverse time attention mechanism. Their
proposed model is based on a two-level neural attention
model that detects influential past visits and significant clin-
ical variables within those visits by mimicking physician
practice to attend to the EHR data in a reverse time order so
that recent clinical measurements are likely receive higher
attention.
Diagnosis prediction in healthcare via attention-based
bidirectional recurrent neural networks (Dipole). Ma
et al. (2017) propose a model that utilizes bidirectional re-
current neural networks to remember all the information of
both the past visits and the future visits. The authors intro-
duce three attention mechanisms to measure the relation-
ships of different visits for the prediction. Dipole uses the
attention mechanism to interpret the prediction results.
Transformer: Bidirectional Encoder Representations
from Transformers (BERT). We train a BERT-based (De-
vlin et al. 2019) model from scratch to encode the time-
series data of our experiments to predict the final outcome
of each time-series.

A.2 Relating SIMPLE-SCL to the Original SCL
The original version of SCL has an additional data
augmentation step: in the loss function LSCL, instead
of using the batch of B points (x1, y1), . . . , (xB , yB),
we instead use a freshly generated batch of 2B points
(x′

1, y
′
1), . . . , (x

′
2B , y

′
2B). Specifically, each original data

point xi is randomly augmented once to get x′
2i−1 and then

xi is randomly augmented a second time to get x′
2i; the aug-

mented points x′
2i−1 and x′

2i have labels y′2i−1 and y′2i that
are set to be the same as yi.

A.3 Clustering on the Embedding Space
Hierarchical Clustering For clustering on the embedding
space, we use complete linkage Agglomerative Hierarchical
Clustering. We first get the embedding representation of our
training dataset and then train the clustering algorithm for
K ∈ {5, 7, 8, 9, 10, 14, 20}. Then, for predictive cluster as-
signment, we train a 3-Nearest Neighbor classifier (KNN)
on the training data, using the cluster assignments obtained
from the previous step. We use our classifier to get the pre-
dicted cluster assignment for the validation set.

A.4 Dataset Information
The following subsections provide detailed information of
our synthetic experiment dataset generation as well as our
real-world datasets where we used to evaluate our models
on.

Synthetic Data We generate a 2D dataset where every
time series has exactly 3 time steps. We consider the static
outcome case so that each time series has a single label (one
of two classes: red or blue). The points are all on a 2D cir-
cle, where the only four possible time series in the embed-
ding space are shown in Figure 4.1(a) and include: (i) “ →
→ ” and (ii) “ → → ” for the blue class and iii)

“ → → ” and (iv) “ → → ” for the red class.
We place the starting time steps (“ ”, “ ”, “ ”, “ ”) on
angular points {0◦, 180◦, 0◦, 180◦} of the cicle circumfer-
ence as shown on Figure 4.1(a). For these starting points
we purposefully have the starting points of the two different
classes fall in the same region. Next for the second time steps
(“ ”, “ ”, “ ”, “ ”), we place them on the angular points
of {45◦, 135◦,−45◦,−135◦}. And finally for the terminal
time steps (“ ”, “ ”, “ ”, “ ”), we place them on angu-
lar points of {80◦, 100◦,−80◦ − 100◦}. Given the clashing
of the two starting time steps, there are a total of 10 true
embedding locations (which could be thought of as cluster
centers). When we generate synthetic time series, each point
is based on one of the 10 true ground truth embedding loca-
tions with Gaussian noise (N (0, 8)) added to the true angles
noted above. We randomly sample 200 of each of the 4 pos-
sible 3-time stepped trajectories so that we have a total of
800 time series.

Medical Information Mart for Intensive Care (MIMIC)
We consider the trajectory of septic patients using data from
the Medical Information Mart for Intensive Care (MIMIC-
III) dataset (v1.4) (Johnson et al. 2018). We follow the same
procedure as done by Komorowski et al. (2018) to identify

9

18,354 septic patients among which there is an observed
mortality rate just above 20% (determined by death within
48h of the final observation y

(Ti)
i = 1 or death within 90

days of the final observation y
(Ti)
i = 2). From MIMIC,

we extract demographic and physiological features accord-
ing to Seymour et al. (2019), resulting in 29 features. Note
that Seymour et al. group these features as follows: (1) Hep-
atic: Bilirubin, AST, ALT; (2) Hematologic: Hemoglobin,
INR, Platelets; (3) Neurologic: GCS; (4) Cardiovascular:
Heart rate, Systolic blood pressure, Bicarbonate, Troponin,
Lactate; (5) Pulmonary: Respiratory rate, SaO2, PaO2; (6)
Inflammatory: Temperature, ESR, WBC count, Bands, C-
Reactive protein; (7) Renal: Serum creatinine; (8) Other:
Age, Gender, Elixhauser, Albumin, Chloride, Sodium, Glu-
cose, BUN. We compile the measurements recorded of these
features in MIMIC for every 4 hours (duration of each
timestep). We impute the missing values from the popula-
tion median if a measurement is not recorded before and the
previously recorded value if the measurement is recorded
in a previous timestep. We also include a set of 26 indi-
cators for our time-varying features at each timestep that
tracks whether a measurement was recorded (= 1) or im-
puted (= 0). This dataset represent the case where only
the final outcome-label is known and non-terminal timesteps
have unknown state-label.

Alzheimer’s Disease Neuroimaging Initiative (ADNI)
We also test our method on the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset (Petersen et al. 2010).
This dataset consists of a total of 11,651 hospital visits from
1,346 patients which tracks the progression of Alzheimer’s
disease via follow-up observations at 6 months interval.
Each patient has 21 variables out of which 5 are static and
16 are time-varying. The features include information on
demographics, biomarkers of the brain function, and cogni-
tive test results. Following Lee and Van Der Schaar (2020),
we set our predictions on three diagnostic groups of normal
brain functioning (y(Ti)

i = 0), mild cognitive impairment
(y(Ti)

i = 1), and Alzheimer’s disease (y(Ti)
i = 2) which

is known at every timestep. This dataset represent the case
where we know the outcome-label at both terminal and non-
terminal timesteps.

A.5 Missing Data Imputation

For both real datasets of this paper, we take the following ap-
proach to impute the missing features in our experiments. (1)
For each patient, if at any time step feature has been recorded
in a previous time step, we use the last recorded value to re-
place the missing feature. (2) If at no previous time step a
feature is recorded, we calculate the population median of
the feature among all patients and impute the missing fea-
ture with this value. In the future work, we aim to extend
our approach to be similar to that of Seymour et al. (2019),
where multiple imputation with chained equations was used
to account for missing data.

A.6 Training Hyperparameters
Table A.1 summarizes the hyperparameters used in all our
experimentations presented in this paper.

A.7 Performance Metrics
We use the same evaluation metrics as Lee and Van
Der Schaar (2020). To evaluate the supervised performance
of our model and the baselines, we use area under re-
ceiver operator characteristic curve (AUROC) and area un-
der precision-recall curve (AUPRC) obtained from the label
predictions of our model and the ground-truth labels on the
outcomes of interest.

In the ablation studies presented in Section A.10, we also
evaluate the unsupervised performance of different ablations
of TEMPORAL-SCL. We cluster on the learned hyperspheri-
cal embeddings using a complete linkage Agglomerative Hi-
erarchical Clustering to discover discrete latent states that
could be of interest. We utilize three standard metrics for
the scenario when ground-truth label is known and a fourth
completely unsupervised metric. The metrics used are pu-
rity score, normalized mutual information (NMI), adjusted
rand index (ARI), and silhouette index (SI). Purity score
ranges from 0 to 1 and explains the homogeneity of each
cluster with regards to the labels. NMI ranges from 0 to 1
and is an information theoretic measure of mutual informa-
tion shared between the labels and the cluster and is adjusted
for the number of clusters with 1 being perfect clustering.
ARI ranges from -1 to 1 and evaluates the percentage of cor-
rect cluster assignments where 0 corresponds to completely
random assignment and 1 being perfect clustering. Lastly,
SI is a completely unsupervised metric ranging from -1 to 1
which provides a simultaneous measure of (1) how similar
members of a cluster are to their own cluster capturing the
homogeneity within a cluster and (2) how different mem-
bers of each cluster are compared to other clusters capturing
heterogeneity across different clusters.

A.8 Synthetic Data Results
The numerical quantitative results for the synthetic dataset

is presented below. In section 4.1 a quantitative explanation
of how our proposed model compares to the tested base-
lines is presented. In Figure A.1, we visualize the embedding
space of all the models tested. For all the baselines tested
where the embedding space does not naturally lie on the hy-
persphere, we show a 3D TSNE manifold of the embedding
space where we qualitatively pick the best structure for each
method by varying the perplexity taken from the following
set: {5, 20, 30, 40, 50}. For the TEMPORAL-SCL model and
its ablations where the embedding is constrained to lie on the
hypersphere, we directly plot the embeddings.

As it can be seen here, our proposed model is the only
model that can fully recover the structure and the 10 clus-
ters of time steps from the input raw feature space shown in
Figure 4.1(a).

A.9 Running Time Comparison
Given that there are multiple components to optimise si-
multaneously, we perform a comparison of how compu-
tationally intensive the training of our proposed model is

10

Table A.1: Training Details and Hyperparamters for Experiments.

Experiment Synthetic Dataset
Main Network 2-Layer FCN ReLU Activation
Main Network Layer Size (input-dimension)2→16→3(embedding-space)
Prediction Network Linear Layer with Softmax Activation 3→2
Temporal Module 1-Layer LSTM 3→3

Optimization Optimizer: Adam, Learning Rate: 1e-4,
Number of Epochs: 20, Batch-Size: 32

Experiment MIMIC
Main Network 2-Layer FCN ReLU Activation
Main Network Layer Size (input-dimension)55→32→32(embedding-space)
Prediction Network Linear Layer with Softmax Activation 32→3
Temporal Module 1-Layer LSTM 32→32

Optimization Optimizer: Adam, Learning Rate: 1e-4,
Number of Epochs: 100, Batch-Size: 128

Experiment ADNI
Main Network 2-Layer FCN ReLU Activation
Main Network Layer Size (input-dimension)21→50→16(embedding-space)
Prediction Network Linear Layer with Softmax Activation 16→3
Temporal Module 1-Layer LSTM 16→16

Optimization Optimizer: Adam, Learning Rate: 1e-4,
Number of Epochs: 100, Batch-Size: 128

compared to one of our baselines (AC-TPC (Lee and Van
Der Schaar 2020)). We report the running time of training
our model compared to AC-TPC in Table A.2 for training
on our machines with identical software/hardware configu-
rations (AMD Ryzen 9 5900X with NVIDIA GTX 1080).

A.10 Ablation Study
In this section, we present an ablation study of our model
to see how each modification contributes to the perfor-
mance. Our full model includes pre-training with SIMPLE-
SCL, enhancing the Temporal Network h, and using
“labels+feature-similarity” for finding the nearest neigh-
bor pairs. We train three additional models in this section
on both our MIMIC and ADNI datasets. (1) TEMPORAL-
SCL trained without the Temporal Network h which sim-
plifies to SIMPLE-SCL, and (1) TEMPORAL-SCL trained
without pre-training, (3) TEMPORAL-SCL trained with
nearest neighbor pairs that use “labels only” instead of
“labels+feature-similarity”. Note that to discover discrete
latent states that could be of interest, we cluster on the
learned hyperspherical embeddings (the z

(ℓ)
i variables) us-

ing a complete linkage Agglomerative Hierarchical Cluster-
ing (Murtagh and Contreras 2012). We describe our clus-
tering approach in Appendix A.3. The unsupervised metrics
presented here are evaluated for the same number of clusters
in each ablation.

Firstly, our empirical findings show that for the models
without pre-training and without the temporal network h
(SIMPLE-SCL), we see a clear performance drop for all su-
pervised and unsupervised metrics which highlights the im-
portance of inclusion of these modules in our model train-
ing. We also calculated the Silhouette Index (SI) of “la-
bels only” and “labels+feature similarity” in the last column
of Table A.3. As it can be seen from the ablation results,

with respect to the supervised prediction performance (AU-
ROC, AUPRC), the two models perform similarly. However,
the main gain of using “labels+feature similarity” comes in
the unsupervised prediction performance (Purity, NMI, ARI,
SI). This is especially apparent in the Silhouette Index score
(a measure of how similar an object is to its own cluster com-
pared to other clusters) where we see the greatest boost in
performance when using “labels+feature similarity” instead
of “labels only” where it shows how our model moves away
from just stratifying risk (which is what the supervised met-
rics are measuring) to additionally being capable of identi-
fying homogeneous disease phenotypes. These experiments
together, underscore the significance of having the different
building blocks of our model for achieving the highest per-
formance gain in our experiments.

A.11 Visualizing Embedding Clusters for MIMIC
We show the full heatmap of Figure 3.1 for how the features
vary across clusters in the test set of our MIMIC dataset in
Figure A.2.

A.12 Visualizing Embedding Clusters for ADNI
To interpret each cluster for ADNI, we plot the heatmap how
features (rows) vary across clusters for the test patients of
ADNI in Figure A.3. Columns are ordered (left to right)
in dementia rate. Here we can also see that abnormal fea-
ture values that are correlated with higher risk of dementia
such as irregular dementia rating scores are present in clus-
ters containing higher proportion of AD.

11

(a) LSTM (b) RETAIN (c) DIPOLE (d) AC-TPC

(e) Transformer (f) SIMPLE-SCL
(g) TEMPORAL-SCL no pretrain-
ing

(h) TEMPORAL-SCL no NN pair-
ing

(i) TEMPORAL-SCL

Figure A.1: Embedding space representation of the test trajectories of simulated dataset. For (b)- (d) 3-Component TSNE Plot
of Embedding Space and for (a) Hyperspherical Embedding is shown.

Table A.2: Training Run-Time

Model Synthetic Dataset MIMIC
AC-TPC 75 seconds 42 minutes
TEMPORAL-SCL 46 seconds 47 minutes

Table A.3: Ablation Study: Supervised and unsupervised performance.

Dataset Model
Supervised Unsupervised

AUROC AUPRC Purity NMI ARI SI

MIMIC

SIMPLE-SCL 0.744±0.003 0.486±0.003 0.773±0.005 0.007±0.003 0.003±0.002 0.011 ± 0.010
TEMPORAL-SCL (no pretrain) 0.725±0.042 0.471±0.001 0.775±0.000 0.007±0.002 0.002±0.001 0.031 ± 0.018

TEMPORAL-SCL (no NN pairing) 0.767±0.005 0.509±0.003 0.781±0.000 0.112±0.007 0.150±0.034 0.143 ± 0.007
TEMPORAL-SCL (full) 0.763±0.001 0.510±0.002 0.793±0.001 0.115±0.002 0.128±0.014 0.423 ± 0.065

ADNI

SIMPLE-SCL 0.902±0.024 0.796±0.020 0.639±0.023 0.159±0.058 0.230±0.012 0.177 ± 0.144
TEMPORAL-SCL (no pretrain) 0.867±0.035 0.766±0.050 0.713±0.095 0.275±0.120 0.209±0.104 0.149 ± 0.080

TEMPORAL-SCL (no NN pairing) 0.894±0.062 0.807±0.045 0.749±0.009 0.446±0.009 0.334±0.015 0.163 ± 0.008
TEMPORAL-SCL (Full) 0.961±0.001 0.867±0.006 0.755±0.023 0.452±0.031 0.399±0.010 0.259 ± 0.031

12

Figure A.2: Heatmap showing how features (rows) vary across clusters (columns) for the sepsis cohort of the MIMIC dataset.
Heatmap intensity values can be thought of as the conditional probability of seeing a feature value (row) conditioned on being
in a cluster (column); these probabilities are estimated using test set snapshots. Columns are ordered left to right in increasing
fraction of test set snapshots that come from a time series that has a final outcome of death.

13

Figure A.3: Heatmap showing how features (rows) vary across clusters (columns) for the ADNI dataset. Heatmap intensity
values can be thought of as the conditional probability of seeing a feature value (row) conditioned on being in a cluster (column);
these probabilities are estimated using test set snapshots. Columns are ordered left to right in increasing fraction of test set
snapshots that come from a time series that has a final outcome of Alzheimer’s Disease.

14

