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Abstract

Commonsense reasoning is essential for AIs to understand,
predict, and respond to human behaviors in social situations.
Recent advancements in deep learning bring promising re-
sults in AI commonsense reasoning. Nevertheless, a young
child often has more sophisticated commonsense reasoning
ability than state-of-the-art AI systems. This observation mo-
tivates us to investigate if AIs can learn from interacting with
children in developing human-level commonsense reasoning
capability. As a first step to launching this line of investiga-
tion, we develop a novel approach to generate contextualized
multi-step commonsense reasoning paths for social situations
conveyed via short stories. The resulting reasoning paths are
intended to serve as an explainable media to enable layper-
sons to understand the underlying reasoning process behind
AI predictions and provide feedback to help align AIs with
human ways of thinking in commonsense reasoning.

Introduction
Common sense is a quintessential human capacity and a
fundamental challenge of AI. There is a general consensus
among the research community that commonsense reason-
ing ability is necessary to achieve human-level performance
in several key areas of AI (Davis and Marcus 2015). Ad-
vancements in deep learning, especially that of large lan-
guage models, have caused a resurgence of interest in com-
monsense reasoning and yielded promising results (Rajani
et al. 2019; Bosselut et al. 2019; Shwartz et al. 2020). As
society rapidly adopts AI technologies, ensuring that AIs
are reliable and trustworthy has become increasingly im-
portant. Efforts on multi-step commonsense reasoning have
been recognized to play an essential role in building such
AIs (Camburu et al. 2018; Majumder et al. 2022) due to
common sense’s inherent interpretability and explainability.

Commonsense reasoning is vital to enable AIs to under-
stand, predict, and respond to human behaviors in social
situations. These are essential to achieve natural and effi-
cient interactions between humans and computers, which is
of great interest to HCI. By acting as a common ground
between humans and AIs where shared mental models can
be established, common sense makes commonsense reason-
ing an easily interpretable explainable medium and enables
laypersons to understand the underlying reasoning process

behind AI predictions. When AIs make a mistake, human
feedback to the erroneous reasoning allows AIs to learn and
recover from the mistake. These potentials of common sense
motivate our work into a commonsense reasoning engine ca-
pable of learning through human feedback.

In education and cognitive science, the development of
commonsense reasoning abilities, especially those relating
to causality, is crucial for children and has been heavily
researched (Bonawitz et al. 2010; Kuhn 2012; Stoel, Box-
tel, and Drie 2014; Shavlik et al. 2022). Despite advance-
ments in AI commonsense reasoning, a typically devel-
oped young child often has more sophisticated common-
sense reasoning ability than state-of-the-art AI systems. We
hope to leverage the established literature in education and
child development to explore the question: Can AIs, like
children, learn human-like common sense by engaging in
explanation-seeking conversations with young children in
story comprehension tasks? As an initial step to explore this
research question, we seek a simple, effective, and control-
lable (i.e., intuitive and safe for children) means for AIs to
generate chain-of-thought explanations to be offered during
the conversations.

Contemporary works on generating multi-step common-
sense reasoning—to be used as external knowledge or expla-
nations for classification and question-answering systems—
largely follow a search-based approach and heavily rely on
context-less commonsense knowledge resources (Paul and
Frank 2019; Ji et al. 2020; Wang et al. 2020; Arabshahi et al.
2021). One major limitation of the resulting multi-step com-
monsense reasoning systems is that most of their inferences
are isolated (i.e., made without access to other inferences).
To illustrate, consider the first and the third reasoning steps1

of Figure 1’s upper reasoning path. The third reasoning step
has no access to any part of the first reasoning step and
is thus oblivious to its presence. Similar to how failing to
incorporate long-term context results in repetitive and self-
contradictory texts in text generation (Holtzman et al. 2018),
isolated inferences are prone to repetitions and contradic-
tions, lowering the resulting reasoning paths’ quality. Fur-
thermore, those multi-step commonsense reasoning systems

1Within this study, we will use inference and reasoning step in-
terchangeably and assume that multi-step reasoning (path) includes
multiple inferences or reasoning steps.
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lack mechanisms to sustain contextualization over multiple
reasoning steps. The absence of such a mechanism could
lead to inconsistent inference performance, which can be
observed within Figure 1’s upper reasoning path, and im-
pair search-based reasoners’ ability to adopt the emerging
contextualized commonsense knowledge resources.

To address the current research gap in contextualized
multi-step commonsense reasoning and as a first step toward
building a commonsense reasoning engine that can learn
from human feedback, we extend the work of GLUCOSE
(Mostafazadeh et al. 2020) by proposing context extension.
Context extension extends GLUCOSE (Mostafazadeh et al.
2020) from generating short, single-step commonsense ex-
planations for events of a story to generating long, multi-step
ones. It incrementally augments the reasoning context with
inferred information by integrating them back into the rea-
soning context in a logical and coherent manner. A small-
scale human evaluation study shows that context extension
can lead to a statistically significant improvement in the
human-perceived quality of the generated reasoning paths.

Related Work
Commonsense Reasoning
Commonsense knowledge graphs are a kind of com-
monsense knowledge resource that represents information
through triplets. They have seen widespread adoption and
successful application in the area of natural language pro-
cessing (Speer, Chin, and Havasi 2018; Sap et al. 2019).
Knowledge triplets are a kind of knowledge representation
dominant in commonsense reasoning that encode common-
sense knowledge as head-relation-tail triplets. For exam-
ple, statements such as ”Apples are fruits.” and ”If some-
one buys a coffee, then they will drink it.” can be encoded
as (apple, is-a, fruit) and (PersonX buys a
coffee, xEffect, drink the coffee), respec-
tively. (Speer, Chin, and Havasi 2018; Sap et al. 2019).

Large language models trained on massive corpora of
natural language texts have achieved state-of-the-art perfor-
mances on numerous AI benchmarks (Raffel et al. 2020)
and drastically affected the research community. Bosselut
et al. (2019) demonstrated that by fine-tuning language mod-
els to generate knowledge triplets found in commonsense
knowledge resources, they gain the ability to express their
implicit commonsense knowledge in the same triplet for-
mat. These triplet-generating language models, often re-
ferred to as knowledge models, perform commonsense in-
ference when provided with a head and a relation (Hwang
et al. 2021). Compared to explicit commonsense knowledge
resources such as knowledge graphs, knowledge models can
generate novel (and often valid) commonsense inferences
even for previously unseen scenarios. Their generalizabil-
ity made commonsense knowledge models a popular choice
as a commonsense knowledge resource (Hwang et al. 2021).

By chaining together multiple commonsense knowledge
triplets, one can form multi-step commonsense reasoning
paths that express additional information beyond individ-
ual knowledge triplets (Bauer, Wang, and Bansal 2018).
Multi-step commonsense reasoning paths can be used as

external information to improve downstream reasoning sys-
tems’ performance or explanations to make a system more
interpretable (Paul and Frank 2019; Ji et al. 2020; Wang
et al. 2020; Arabshahi et al. 2021). Some generate reasoning
paths using explicit traversals through commonsense knowl-
edge graphs (Paul and Frank 2019; Ji et al. 2020); others
form reasoning paths by connecting commonsense knowl-
edge triplets iteratively retrieved from triplet-generating lan-
guage models (Wang et al. 2020; Arabshahi et al. 2021).
Studies often incorporate additional mechanisms and heuris-
tics to impose desirable properties on the generated reason-
ing paths, which vary from study to study.

The exact algorithms and heuristics vary across studies,
as they largely depend on the study’s intended common-
sense reasoning tasks and chosen commonsense knowledge
resources. However, a common theme across multiple stud-
ies is formulating multi-step commonsense reasoning as a
search problem; we, therefore, adopt the same formulation
within the study. To help improve the generalizability of our
study, we aim to minimize the number of assumptions made
about the reasoning algorithm and heuristics that could in-
herently limit the applicability of context extension and our
findings. As a result, we adopt random walks as our com-
monsense reasoner: by generating multi-step commonsense
reasoning through sampling from random walks, we rely
on no heuristics and can, in principle, generate all possible
reasoning paths. Although our study primarily focuses on
the generated reasoning path’s quality, the findings of Wang
et al. (2020), which also employs random walks, suggest
that downstream tasks can leverage reasoning paths gener-
ated through randomness as external knowledge.

Child Commonsense Reasoning about Causality
One form of commonsense reasoning the field of child de-
velopment has extensively researched is causal reasoning.
Causal reasoning is the ability to construct cause-effect re-
lations in the physical world and storytelling (Engel 1995;
Gordon, Bejan, and Sagae 2011; Reed et al. 2015). The
development of causal reasoning ensures children can per-
form effectively in academic learning (Stoel, Boxtel, and
Drie 2014; Shavlik et al. 2022), as well as make sense of
the world (Kuhn 2012).

The literature also sheds light on potential mechanisms
through which AIs’ reasoning may be improved. First,
causal reasoning can be prompted through dialogue, and var-
ious methods have been proposed to facilitate the dialectic
process. Second, explanations require a higher level of rea-
soning capability than inferences and predictions and play
an essential role in how humans acquire causal reasoning.
Therefore, we plan to adopt the explanation-seeking conver-
sation as the essential mechanism to facilitate the improve-
ment of AI commonsense reasoning.

It is generally accepted that young children develop causal
reasoning through dialogue and conversation. Effective con-
versational approaches documented by prior empirical stud-
ies include: developing a set of causality-oriented pedagogi-
cal principles to engage the discussion in the classroom set-
ting (Stoel, Boxtel, and Drie 2014); promoting the use of
dialogic scaffolds between students and educational prac-
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The man made pancakes. He
poured syrup on the pancakes. He
took a bite. He accidentally had
used raspberry syrup. He gave
the rest of the pancake to his
sister.

The man made pancakes. He
poured syrup on the pancakes.
The man eats. He took a bite. He
accidentally had used raspberry
syrup. The man has a bad taste.
He gave the rest of the pancake
to his sister.

The man made pancakes. He
poured syrup on the pancakes.
The man eats. He took a bite. He
accidentally had used raspberry
syrup. He gave the rest of the
pancake to his sister.

Causes/Enables 
Reasoning Step 1

The man takes a bite.
Causes/Enables 

Reasoning Step 2

The man eats.
Causes/Enables 

Reasoning Step 3

The man has a bad taste. The man gives the
pancakes to his sister.
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poured syrup on the pancakes. He
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used raspberry syrup. He gave
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The man made pancakes. He
poured syrup on the pancakes. He
took a bite. He accidentally had
used raspberry syrup. He gave
the rest of the pancake to his
sister.

The man made pancakes. He
poured syrup on the pancakes. He
took a bite. He accidentally had
used raspberry syrup. He gave
the rest of the pancake to his
sister.

Causes
Reasoning Step 1 

The man accidentally uses
raspberry syrup.
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Reasoning Step 2

The man feel(s) regret.
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Figure 1: Example three-step commonsense reasoning paths generated by our system. The upper path was generated without
context extension, and all three reasoning steps use the same reasoning context; the lower path was generated using the random
implementation of context extension that randomly inserts the inferred information into the reasoning context. For the upper
path, only the first reasoning step is in-context reasoning (i.e., the premise is in the reasoning context), and the other two are
out-of-context reasoning (i.e., the premise is not in the reasoning context). Furthermore, the upper path exhibits issues such as
repetition and contradiction, and there is a noticeable quality difference between its first and the other two reasoning steps.

titioners (Pontecorvo and Girardet 1993; Kim 2016); har-
nessing visual representation such as diagram or mindmap
to elicit conversation that leads to relation constructions be-
tween information (Easterday, Aleven, and Scheines 2007;
Buzan 2018; van der Wilt, van der Nat, and van der Veen
2022); and leveraging hand puppet to trigger children’s
causal utterances in storytelling context (Reed et al. 2015).

During the development of causal reasoning, it is criti-
cal for children to draw connections between an antecedent
and its outcome (i.e., inference), predict the outcome of a
given antecedent (i.e., prediction), and explain the mech-
anism that leads to that outcome (i.e., explanation) (Gop-
nik et al. 2004; Bonawitz et al. 2010; Legare, Gelman, and
Wellman 2010). Among these three dimensions, the role of
explanation—in causal forms like “why” questions or “be-
cause” statements—has recently gained special attention in
the field of child development (Hickling and Wellman 2001;
Wellman and Liu 2007; Legare, Sobel, and Callanan 2017).
Compared to inference and prediction, explanation requires
more abstract and higher-level reasoning capabilities since
it involves a “more general system or framework of causal

forces, factors, and processes” (Wellman and Liu 2007) and
is thus fundamental for children to generalize knowledge
and improve their understanding of causal structure. (Well-
man and Liu 2007; Lombrozo and Vasilyeva 2017). When
explanation occurs, either to others or to themselves, hu-
mans are able to build causal knowledge and transfer extant
understanding to novel cases in a more productive manner
(Williams and Lombrozo 2010; Walker et al. 2012; Legare,
Sobel, and Callanan 2017).

Contextualized Commonsense Reasoning
Prior works on contextualized commonsense reasoning are
primarily concerned with ensuring individual inferences are
appropriate for the reasoning context (i.e., rational, relevant,
and informative) (Ji et al. 2020). Several methods have been
proposed to ensure such local contextualization: using high-
quality commonsense knowledge resources for rational and
informative inferences; preferring or limiting inferences that
involve concepts that are semantically similar to those in the
reasoning context; performing heuristic searches to find the
reasoning paths with the highest total relevance (Paul and
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Frank 2019; Ji et al. 2020; Wang et al. 2020). In this study,
we also pay attention to global contextualization: ensuring
all the individual inferences are appropriate for each other
and form coherent reasoning when used together (e.g., no
repeated or contradictory inferences).

Context Extension
With the ultimate goal of building a conversational agent to
participate in explanation-seeking conversations with young
children in story comprehension tasks, we present context
extension: a mechanism, inspired by production systems,
that introduces context into search-based multi-step com-
monsense reasoning approaches. The mechanism’s opera-
tion is simple and intuitive; the operation is also controllable
as it is primarily symbolic.

Motivation
Existing multi-step commonsense reasoning systems make
most of their inferences in isolation from each other—a rea-
soning step is not made in consideration of all other reason-
ing steps; this leads to issues such as repetitions and con-
tradictions, as Figure 1 illustrates. Furthermore, as existing
multi-step commonsense reasoners mainly rely on context-
less commonsense knowledge resources, they lack mecha-
nisms to sustain contextualization over multiple reasoning
steps, which could impair their ability to adopt contextual-
ized knowledge resources. We hope to address these two is-
sues by taking inspiration from production systems.

Production systems are forward-chaining reasoning sys-
tems popular in cognitive architectures (Laird 2012). Such a
system models human short-term and long-term memory us-
ing its working memory and knowledge base, respectively. It
operates by iteratively modifying the working memory using
productions (i.e., if-then instructions) from the knowledge
base until deriving the desired statement (Russell, Norvig,
and Davis 2010). Production systems often require a con-
trol component to help resolve competing productions. We
draw parallels between the components of production sys-
tems and that of contextualized multi-step commonsense
reasoners: the working memory, the knowledge base, and the
productions correspond to the reasoning context, the knowl-
edge model, and the knowledge triplets. However, unlike the
working memory (e.g., sets of logical statements), the rea-
soning context (e.g., natural language sentences) is usually
order-sensitive. This difference is the primary motivation be-
hind context extension: how to appropriately extend order-
sensitive reasoning contexts, such as stories?

GLUCOSE Contextualized Knowledge Model
The GeneraLized and COntextualized Story Explanations
(GLUCOSE) (Mostafazadeh et al. 2020) is a large collection
of more than 670K story-specific commonsense knowledge
curated through crowdsourcing. It captures implicit com-
monsense knowledge using semi-structured inference rules,
each consisting of a specific statement (i.e., story grounded
explanation) and a corresponding general rule (i.e., gener-
alized commonsense knowledge). Both specific statements
and general rules adopt a knowledge triplet representation.

GLUCOSE organizes its commonsense knowledge along
ten reasoning dimensions differentiated by their reasoning
aspects (i.e., cause and effect, naive psychology, location
state, possession state, and other aspects) and directions (i.e.,
forward and backward). Examples of specific statements
generated by GLUCOSE can be found in Figure 1; specially,
consider the second reasoning step of the lower reason-
ing path: The man eats >Causes/Enables> The
man has a bad taste is a reasoning that is specific
to the story context. Mostafazadeh et al. (2020) showed
that GLUCOSE could be used to fine-tune language models
to generate commonsense explanations that rival humans’
when provided with a story context, a premise sentence, and
a reasoning dimension.

In addition to sharing little overlap with existing com-
monsense knowledge resources (Mostafazadeh et al. 2020),
namely ConceptNet (Speer, Chin, and Havasi 2018) and
ATOMIC (Sap et al. 2019), GLUCOSE distinguishes it-
self from these resources in two ways: it uses a semi-
structured knowledge representation and captures contex-
tualized commonsense knowledge. Unlike conventional
knowledge triplets, whose heads and tails are words or
phrases, GLUCOSE uses natural language sentences with
predefined structures as its triplets’ heads and tails, en-
abling them to capture richer commonsense knowledge—
GLUCOSE adopts a more expressive knowledge represen-
tation than other commonsense knowledge resources. As all
GLUCOSE commonsense knowledge is grounded in stories
from the ROCStories Corpus (Mostafazadeh et al. 2016),
GLUCOSE implicitly captures the subtle notions of con-
textualized commonsense knowledge—all GLUCOSE com-
monsense knowledge is relevant, informative, and logically
consistent with respect to its narrative context.

We adopt a GLUCOSE-fine-tuned T5 language model as
the contextualized knowledge model used throughout our
evaluations. We only make use of the specific statement parts
of the generated explanations, which are sufficient for the
purposes of our study. Additionally, we only make use of the
five forward reasoning dimensions of GLUCOSE (i.e., di-
mensions 6 through 10), as production systems are forward-
chaining reasoning systems. However, it is important to note
that context extension is not limited to forward reasoning.

Random Walks Reasoner
Reiterating an earlier point, to help improve the generaliz-
ability of our study, we minimize the number of assumptions
made about the reasoning algorithm and heuristics, which
vary across studies, that could inherently limit the applica-
bility of context extension and our findings. We, therefore,
adopt random walks as our commonsense reasoner, impos-
ing minimal assumptions on the algorithms and heuristics.

From an implementation perspective, the GLUCOSE-
fine-tuned T5 language model, which serves as our con-
textualized knowledge model, can be viewed as a triplet-
generating function KM with three parameters:

• Context the narrative context (i.e., a list of sentences),
• Premise the premise sentence (i.e., a sentence), and
• Dimension the reasoning dimension (i.e., an integer).
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Algorithm 1: Random walk reasoner (no context extension).

function REASONER(Context, Length)
Path← []
Premise← RANDOMSELECT (Context)
for i← 1, Length do

Dim← RANDOMSELECT ([6, 7, 8, 9, 10])
Triplet← KM (Context, Premise,Dim)
Path.APPEND (Triplet)
Premise← Triplet[2]

end for
return Path

end function

As our study only leverages the forward reasoning dimen-
sions, the resulting triplets of KM will always be of the form
(premise, relation, conclusion) where premise is the cause of
conclusion and relation is a dimension-specific label.

Algorithm 1 shows a random-walk-based multi-step com-
monsense reasoner with two parameters:
• Context a list of strings representing the reasoning con-

text. For GLUCOSE, a list of sentences represents the
narrative context; and

• Length an integer specifying the length of the resulting
reasoning path, which is represented as a list of triplets.

The function generates a list of triplets iteratively retrieved
from the knowledge model KM, which can then be con-
nected to form a reasoning path.

Context Extension

Algorithm 2: Random walk reasoner with context extension.

function REASONER(Context, Length)
Path← []
Premise← RANDOMSELECT (Context)
for i← 1, Length do

Dim← RANDOMSELECT ([6, 7, 8, 9, 10])
Triplet← KM (Context, Premise,Dim)
Path.APPEND (Triplet)
Premise← Triplet[2]
Context← CE(
Context, T riplet[2], T riplet[1] ≺ Triplet[2])

end for
return Path

end function

After each reasoning step, context extension augments
the reasoning context with the inferred information (i.e., the
conclusion) by inserting it into the reasoning context fol-
lowing specific rules. We provide the causal relationship be-
tween the premise and conclusion as additional contextual
information to the context extension mechanism. We pro-
pose three implementations of context extension with an in-
creasing level of logicality and coherence.
• Random This implementation randomly inserts the new

sentence into the current reasoning context. We view this
as a baseline implementation.

• Causal Random This implementation randomly inserts
the new sentence into the current reasoning context
somewhere before or somewhere after the sentence that
itself that itself is the cause of or effect of, respectively.
This implementation ensures the coherence of the gener-
ated context from a causal perspective.

• Causal Adjacent This implementation inserts the new
sentence into the current reasoning context immediately
before or after the sentence that itself is the cause of or
effect of, respectively. This implementation ensures the
coherence of the generated context from both a causal
and a centering (Grosz, Joshi, and Weinstein 1995) per-
spectives.

From an implementation perspective, all three implemen-
tations of context extension can be viewed as a function CE
with three parameters:

• Context the current context (i.e., a list of sentences),
• Conclusion the conclusion sentence (i.e., a sentence), and
• Information additional information about the causal rela-

tionship between the sentences (e.g., A preceeds B, de-
noted as A ≺ B; and A succeeds B, denoted as A ≻ B).

We show in Algorithm 2 how context extension CE can be
added to our random-walk-based reasoner.

Evaluation
We used the same knowledge model (i.e., T5-large using
greedy decoding (Raffel et al. 2020)) throughout our study
as a control variable and used context extension as an inde-
pendent variable.

In search-based multi-step commonsense reasoning, the
effects of incorrect inferences will be amplified by each rea-
soning step, as later inferences are conditioned on earlier
ones. It is, therefore, important to ensure the performance
of the knowledge model used. We defer the detailed discus-
sion of our fine-tuning process to the appendix. However,
to summarize, we discovered that oversampling is an effec-
tive method to combat the imbalance of training data across
different reasoning dimensions in GLUCOSE.

We hypothesize that context extension can improve the
human-perceived quality of the generated multi-step com-
monsense reasoning paths. To verify this hypothesis, we
randomly sampled and then manually evaluated three-step
commonsense reasoning paths using each proposed con-
text extension implementation. We randomly selected 50
stories from the ROCStories Corpus (Mostafazadeh et al.
2016), which GLUCOSE was built upon (Mostafazadeh
et al. 2020), to be used as the reasoning contexts. For each
selected story, we performed the following evaluation pro-
cedure:

1. We generated three-step commonsense reasoning paths
through our reasoner conditioned on the context exten-
sion implementation used (i.e., no extension, random,
causal random, and causal adjacent).

2. We randomly shuffled the four reasoning paths and pre-
sented them to an expert evaluator along with the reason-
ing context (i.e., the story).
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Score count Score distribution (%) Statistics

Experiment Condition 0 1 2 3 Total 0 1 2 3 AVG STD

Context extension

No extension 66 70 87 27 250 26.4 28.0 34.8 10.8 1.300 0.979
Random 68 85 64 33 250 27.2 34.0 25.6 13.2 1.248 1.000

Causal random 52 72 78 48 250 20.8 28.8 31.2 19.2 1.488 1.027
Causal adjacent 40 93 81 36 250 16.0 37.2 32.4 14.4 1.452 0.927

Table 1: Summary of the human evaluation results. The highest average quality rating is highlighted.

3. The expert evaluator indicates their perceived quality for
each path using a four-point Likert scale, where zero in-
dicates that the reasoning path is completely nonsensical
and three indicates that the reasoning path is human-like.
A similar Likert scale was used during the human evalu-
ation of Mostafazadeh et al. (2020).

We repeated the procedure five times per story for all 50
stories, which resulted in 1000 manually evaluated three-
step reasoning paths evenly distributed across stories and the
context extension implementation used.

Result
The Friedman test suggests that there exists a statistically
significant difference among the four context extension im-
plementations (p = 0.012). As a result, we conducted post-
hoc pairwise comparisons using Wilcoxon signed-rank test,
which revealed that

• Random context extension negatively impacted the rea-
soning quality compared to no context extension;

• Both causal random and causal adjacent context exten-
sion yielded better reasoning compared to other methods;

• There is no statistically significant difference between
causal random and causal adjacent context extension.
However, causal random scored slightly higher than
causal adjacent, but causal adjacent is more consistent
than causal random.

Discussion
Context extension incrementally augments the reasoning
context with inferred information by integrating them back
into the reasoning context in a logical and coherent manner.
We attribute the performance gain from context extension to
the following two factors:

• When coupled with a contextualized knowledge model,
context extension allows inferences to be made in con-
sideration of all prior inferences, thus enforcing global
contextualization (i.e., ensuring all the individual infer-
ences are appropriate for each other and form coherent
reasoning when used together).

• By integrating prior inferences into the reasoning con-
text, the premises for future inferences (which are based
on prior inferences) are guaranteed to be within the rea-
soning context. This invariant better aligns with the as-
sumptions of contextualized knowledge model, thus in-
directly ensuring inference quality.

Limitation and Future Work
Although they improve the quality of the resulting reason-
ing paths, the proposed context extensions are still prelim-
inary and leave huge room for improvement. For example,
more sophisticated methods, such as temporal graph extrac-
tion, could be used to analyze and propose sentence insertion
locations. Currently, context extension is mainly intended
for GLUCOSE (Mostafazadeh et al. 2020) or similar con-
textualized commonsense knowledge models. However, it
is possible to integrate commonsense knowledge retrieved
or generated from other knowledge resources, such as Con-
ceptNet (Speer, Chin, and Havasi 2018) and ATOMIC (Sap
et al. 2019; Hwang et al. 2021), during the extension process.
The evaluation of the technique should also be extended to
include backward reasoning dimensions and involve more
evaluators.

The generated reasoning paths and their associated
human-evaluated quality score already permit a prelimi-
nary investigation into children’s reactions toward machine-
generated commonsense reasoning paths. We intend to carry
out this investigation which will inform us of the appropriate
interaction and elicitation strategies for gathering concrete
feedback from children.

Conclusion
Multi-step commonsense reasoning may play an essential
role in building reliable and explainable AIs for the fu-
ture. To bridge the current research gap between locally and
globally contextualization multi-step commonsense reason-
ing, we propose context-extension, a mechanism to enable
search-based multi-step commonsense reasoners to leverage
the emerging contextualized commonsense knowledge re-
sources. Results from a small-scale human evaluation show
that our mechanism improves reasoning quality by a statisti-
cally significant margin. However, substantial refinement to
the mechanism can still be made, leading to exciting future
research opportunities.
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Camburu, O.-M.; Rocktäschel, T.; Lukasiewicz, T.; and
Blunsom, P. 2018. e-SNLI: Natural Language Inference
with Natural Language Explanations. In Advances in Neural
Information Processing Systems, volume 31. Curran Asso-
ciates, Inc.
Davis, E.; and Marcus, G. 2015. Commonsense Reason-
ing and Commonsense Knowledge in Artificial Intelligence.
Communications of the ACM, 58(9): 92–103.
Easterday, M. W.; Aleven, V.; and Scheines, R. 2007. ’Tis
Better to Construct than to Receive? The Effects of Diagram
Tools on Causal Reasoning. In Proceedings of the 2007
Conference on Artificial Intelligence in Education: Build-
ing Technology Rich Learning Contexts That Work, 93–100.
NLD: IOS Press. ISBN 9781586037642.
Engel, S. 1995. The Stories Children Tell: Making Sense Of
The Narratives Of Childhood. Henry Holt and Company.
ISBN 9781466813137.
Gopnik, A.; Glymour, C.; Sobel, D.; Schulz, L.; Kushnir, T.;
and Danks, D. 2004. A Theory of Causal Learning in Chil-
dren: Causal Maps and Bayes Nets. Psychological review,
111: 3–32.
Gordon, A.; Bejan, C.; and Sagae, K. 2011. Commonsense
Causal Reasoning Using Millions of Personal Stories. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
25(1): 1180–1185.
Grosz, B. J.; Joshi, A. K.; and Weinstein, S. 1995. Centering:
A Framework for Modeling the Local Coherence of Dis-
course. Computational Linguistics, 21(2): 203–225. Place:
Cambridge, MA Publisher: MIT Press.
Hickling, A. K.; and Wellman, H. M. 2001. The emer-
gence of children’s causal explanations and theories: evi-
dence from everyday conversation. Developmental Psychol-
ogy, 37(5): 668–683.
Holtzman, A.; Buys, J.; Forbes, M.; Bosselut, A.; Golub, D.;
and Choi, Y. 2018. Learning to Write with Cooperative Dis-
criminators. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), 1638–1649. Melbourne, Australia: Associa-
tion for Computational Linguistics.

Hwang, J. D.; Bhagavatula, C.; Bras, R. L.; Da, J.; Sak-
aguchi, K.; Bosselut, A.; and Choi, Y. 2021. COMET-
ATOMIC 2020: On Symbolic and Neural Commonsense
Knowledge Graphs. In AAAI.
Ji, H.; Ke, P.; Huang, S.; Wei, F.; and Huang, M. 2020. Gen-
erating Commonsense Explanation by Extracting Bridge
Concepts from Reasoning Paths. In AACL.
Kim, M. 2016. Children’s Reasoning as Collective So-
cial Action through Problem Solving in Grade 2/3 Science
Classrooms. International Journal of Science Education,
38(1): 51–72.
Kuhn, D. 2012. The development of causal reasoning.
WIREs Cognitive Science, 3(3): 327–335.
Laird, J. E. 2012. The Soar Cognitive Architecture.
Legare, C. H.; Gelman, S. A.; and Wellman, H. M. 2010. In-
consistency with prior knowledge triggers children’s causal
explanatory reasoning. Child Development, 81(3): 929–944.
Legare, C. H.; Sobel, D. M.; and Callanan, M. 2017. Causal
learning is collaborative: Examining explanation and explo-
ration in social contexts. Psychonomic bulletin review,
24(5): 1548–1554.
Lombrozo, T.; and Vasilyeva, N. 2017. Causal Explanation.
In Waldmann, M., ed., The Oxford Handbook of Causal Rea-
soning, Oxford handbooks online, 415–432. Oxford Univer-
sity Press. ISBN 9780199399550.
Majumder, B. P.; Camburu, O.; Lukasiewicz, T.;
and Mcauley, J. 2022. Knowledge-Grounded Self-
Rationalization via Extractive and Natural Language
Explanations. In Proceedings of the 39th International
Conference on Machine Learning, 14786–14801. PMLR.
ISSN: 2640-3498.
Mostafazadeh, N.; Chambers, N.; He, X.; Parikh, D.; Batra,
D.; Vanderwende, L.; Kohli, P.; and Allen, J. F. 2016. A
Corpus and Cloze Evaluation for Deeper Understanding of
Commonsense Stories. In NAACL.
Mostafazadeh, N.; Kalyanpur, A.; Moon, L.; Buchanan, D.;
Berkowitz, L.; Biran, O.; and Chu-Carroll, J. 2020. GLU-
COSE: GeneraLized and COntextualized Story Explana-
tions. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 4569–
4586. Online: Association for Computational Linguistics.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
BLEU: A Method for Automatic Evaluation of Machine
Translation. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, ACL ’02,
311–318. USA: Association for Computational Linguistics.
Paul, D.; and Frank, A. 2019. Ranking and Selecting Multi-
Hop Knowledge Paths to Better Predict Human Needs. In
Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short
Papers), 3671–3681. Minneapolis, Minnesota: Association
for Computational Linguistics.
Pontecorvo, C.; and Girardet, H. 1993. Arguing and Rea-
soning in Understanding Historical Topics. Cognition and
Instruction, 11(3-4): 365–395.

7



Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the Limits of Transfer Learning with a Unified Text-
to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv:
1910.10683.
Rajani, N. F.; McCann, B.; Xiong, C.; and Socher, R. 2019.
Explain Yourself! Leveraging Language Models for Com-
monsense Reasoning. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics,
4932–4942. Florence, Italy: Association for Computational
Linguistics.
Reed, H.; Hurks, P.; Kirschner, P.; and Jolles, J. 2015.
Preschoolers’ Causal Reasoning During Shared Picture
Book Storytelling: A Cross-Case Comparison Descriptive
Study. Journal of Research in Childhood Education, 29.
Russell, S. J.; Norvig, P.; and Davis, E. 2010. Artificial intel-
ligence: a modern approach. Prentice Hall series in artificial
intelligence. Upper Saddle River: Prentice Hall, 3rd edition.
ISBN 978-0-13-604259-4.
Sap, M.; Le Bras, R.; Allaway, E.; Bhagavatula, C.; Lourie,
N.; Rashkin, H.; Roof, B.; Smith, N. A.; and Choi, Y. 2019.
ATOMIC: An Atlas of Machine Commonsense for If-Then
Reasoning. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 33: 3027–3035.
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Knowledge Model Fine-Tuning
We designed our language model prompt based on the orig-
inal T5’s prompt design for SQuAD (Raffel et al. 2020)
with additional fields added to provide GLUCOSE-specific
information: “glucose dimension: {dimension} question:
{dimension-specific question} *{sentence}* context: {story
context}.” Table 2 lists the dimension-specific question pre-
fixes we used during the study.

We curated our training and validation dataset as follows:
1. To ensure the quality of the inferences, we only used the

subset of GLUCOSE where the quality score is at least
2, which we refer to as the quality subset.

2. Using stratified sampling, ensuring a similar distribution
of reasoning dimensions and premise sentence position
between the two datasets, 10% of the quality subset was
sampled to be used as the validation set. We also ensured
that no stories were shared between the two datasets to
prevent data leakage.

3. Finally, to combat the imbalance of data between differ-
ent GLUCOSE reasoning dimensions, we augmented the
training set via random oversampling on all minority rea-
soning dimensions.

We fine-tuned the model using the same hyperparame-
ters and optimizer settings from Raffel et al. (2020), which
was also used by Mostafazadeh et al. (2020). We evaluated
the perplexity of the model on the validation set at the end
of each epoch and performed early stopping when the per-
plexity stopped decreasing for three consecutive epochs. We
adopt the same automatic evaluation used by Mostafazadeh

Dim Question prefix

1 What is the event that directly causes or enables
2 What is the emotion or basic human drive that motivates
3 What is the location state that enables
4 What is the possession state that enables
5 What is the attribute that enables
6 What is the event directly caused or enabled by
7 What is the emotion that is caused by
8 What is the location state that results from
9 What is the possession state that results from

10 What is the attribute that results from

Table 2: Dimension-specific question prefixes used through-
out our study. We derived these prefixed from the mean-
ing of each GLUCOSE reasoning dimension shown in
Mostafazadeh et al. (2020).
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Specific statement General rule

Dim Original Ours Original Ours

1 72.5 74.6 66.4 67.9
2 73.9 75.6 67.6 72.0
3 73.8 76.5 68.5 73.3
4 79.3 84.0 73.0 77.9
5 70.5 73.5 69.8 72.0
6 80.2 77.7 77.6 70.3
7 81.1 82.5 76.8 74.5
8 86.6 85.3 86.8 81.0
9 71.7 89.6 68.6 88.0
10 66.9 70.7 57.5 73.6

Table 3: Evaluation of our model following the same setup
as Mostafazadeh et al. (2020). Higher scores are highlighted.

et al. (2020) (i.e., BLEU (Papineni et al. 2002)). We com-
pared our model’s performance with the best model reported
in Mostafazadeh et al. (2020) in Table 3. On average, our
model outperforms the original by 4.68% for specific infer-
ence and by 6.30% for general inference.
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