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Abstract
Representation learning is crucial in solving most Natural Lan-
guage Processing (NLP) problems, including Word Sense Dis-
ambiguation (WSD). The WSD task tries to find the best mean-
ing in a knowledge base for a word with multiple meanings (am-
biguous word). WSD methods choose this best meaning based
on the context, i.e., the words around the ambiguous word in
the input text document. Word representations may improve
the effectiveness of the disambiguation models if they carry
helpful information from the context and the knowledge base.
In this paper, first, we provide an in-depth quantitative and qual-
itative analysis of existing transformer-based language models
to understand their capabilities and potential limitations in
encoding and recovering word senses. Second, we present a
novel contextual-knowledge base aware sense representation
method. The novelty in our representation is the integration of
the knowledge base and the context. This representation lies
in a space comparable to contextualized word vectors, thus al-
lowing a word occurrence to be easily linked to its meaning by
applying a simple nearest-neighbor approach. Finally, we com-
pare our approach with state-of-the-art embedding methods
for WSD.

Introduction
One important factor in Natural Language Processing (NLP)
is representation learning, which plays a significant role in
different tasks. Representation learning shows its importance
by caring for information from different sources, like infor-
mation from the context of the text (Navigli 2009; Saeidi et al.
2019). This hidden information is beneficial when solving
some NLP tasks that rely on the context (Kosmajac, Taylor,
and Saeidi 2020). One of these tasks is Word Sense Disam-
biguation (WSD). In this task, the input text includes words
that have multiple possible meanings, and the goal is to find
the best meaning based on the context. A word with multiple
possible meanings is called an ambiguous word. The possi-
ble meanings are selected from a knowledge base (KB), like
Wikipedia, known as predefined sense inventory. The context
here refers to the input text in which an ambiguous word is.
The text ambiguity problem arises from the difficulty of

picking the correct meaning for a word with multiple mean-
ings. This task is easy for a human, especially when one
considers the surrounding words, and the human reader iden-
tifies the correct meaning of each word based on the context

in which the word is used. Computational methods try to
mimic this approach (Ferreira, Pimentel, and Cristo 2018).
Furthermore, these methods often represent their output by
linking each word occurrence to an explicit representation
of the chosen sense (West, Paranjape, and Leskovec 2015).
We can divide the approaches to tackle this problem into the
machine learning-based approach and the knowledge-based
approach (Scarlini, Pasini, and Navigli 2020b). In the machine
learning-based approach, systems are trained to perform the
task (Saeidi et al. 2019). On the other hand, the knowledge-
based approach requires external lexical resources such as
Wikipedia, WordNet (Miller et al. 1990), a dictionary, or a
thesaurus.
Some techniques to represent words as vectors (word

embedding) include tf-idf (Ramos et al. 2003), and
word2vec (Mikolov et al. 2013). Recently, embeddings based
on pre-trained language models have attracted much interest.
These recent models have shown promising results compared
to classical embeddings for several NLP tasks. WSD is a
task that achieves better results using the current pre-trained
language models (Chronopoulou, Baziotis, and Potamianos
2019). These models include, e.g., ELMO (Peters et al.
2018a), BERT (Devlin et al. 2018), and XLNET (Yang et al.
2019), which encode several pieces of linguistic information
in their word representations. These representations differ
from static neural word embeddings (Pennington, Socher,
and Manning 2014) in that they depend on the surround-
ing context of the word. This difference makes these vec-
tor representations especially interesting for the WSD task,
where effective contextual representations can be highly ben-
eficial for resolving lexical ambiguity. These representations
enabled sense-annotated corpora to be exploited more effi-
ciently (Loureiro and Jorge 2019). While recent works on
word sense disambiguation using language models and con-
textualized embeddings show success, few studies analyze
their effective behavior in lexical ambiguity regarding correct
disambiguation. To our knowledge, the most recent work on
this topic is by (Loureiro et al. 2021). This work considers
the ability of some of the current contextualized models to
support WSD.
One other important factor in the text ambiguity problem

is the knowledge base. Knowledge bases are different in na-
ture (Aleksandrova and Drouin 2020); for example, Word-
Net is a lexical graph database of semantic relations (e.g.,

1



synonyms, hyponyms, and meronyms) between words. Syn-
onyms are grouped into synsets with short definitions and
usage examples. WordNet can thus be seen as a combina-
tion and extension of a dictionary and thesaurus (Azad and
Deepak 2019). Wikipedia is a hyperlink-based graph between
encyclopedia entries. In WSD, with Wikipedia as the KB,
we face the problem of link ambiguity between Wikipedia
pages, meaning a phrase can usually be linked to more than
one Wikipedia page in which the correct link depends on the
context where it occurs. For example, the word “bar” can be
linked to different articles, depending on whether it is used in
a business or musical context.
This study overviews current text embedding approaches,

focusing on the contextualized sense representation models.
We consider a wide range of contextualized language mod-
els and evaluate their ability to capture lexical ambiguity in
English. This evaluation is done from two perspectives. First,
by analyzing the results of each layer of the language model,
we discover which part of the model works better for disam-
biguation.Second, we identify which parts of speech are most
commonly disambiguated incorrectly by different methods.
Finally, we focus on the internal representation of the layers
for modeling the errors of word categories. The goal is to find
a useful word embedding representation for WSD and find the
defects of these current approaches. Understanding the pros
and cons of current representation learning methods helps us
build a more effective embedding as our novel contribution.
We use two different metrics to evaluate the performance of
these embeddings in the context of disambiguation. We also
provide an overview of the disambiguation methods and the
most used ones in the literature. Our novel contribution pro-
vides a new representation of learning using the context of the
input text and the context of the knowledge base. Using our
vector representations, we applied the nearest neighbor heuris-
tic algorithm to disambiguate ambiguous words. We finally
compare the performance of our representations with the most
current methods in solving the word sense disambiguation
task and show our approach’s efficiency.

Related Work
In this section, we first overview related works for the WSD
task and then provide an overview of previous works toward
analyzing pre-trained language models for lexical ambiguity.
The WSD task is at the core of lexical semantics and has been
tackled with various approaches. We divide these approaches
into two categories of knowledge-based and supervised ap-
proaches (Navigli 2009).

Knowledge-Based Approaches
Knowledge-based methods use the semantic network struc-
ture, e.g., Wikipedia (Fogarolli 2009), WordNet (Miller et al.
1990), or BabelNet (Navigli and Ponzetto 2012), to find
the correct meaning based on its context for each input
word (Moro, Raganato, and Navigli 2014). In addition, these
approaches employ algorithms on graphs to address the word
ambiguity in texts (Agirre, de Lacalle, and Soroa 2014). Dis-
ambiguation based on Wikipedia has been demonstrated to
be comparable in terms of coverage to domain-specific ontol-
ogy (Weikum et al. 2020) since it has broad coverage, with

documents about entities in various forms domains (Martinez-
Rodriguez, Hogan, and Lopez-Arevalo 2020). The most
widely used lexical knowledge base is WordNet, although
it is restricted to the English lexicon, limiting its usefulness to
other vocabularies. BabelNet solves this challenge by combin-
ing lexical and semantic information from various sources in
numerous languages, allowing knowledge-based approaches
to scale across all languages it supports. Despite their poten-
tial to scale across languages, knowledge-based techniques
on English fall short of supervised systems in terms of accu-
racy (Scarlini, Pasini, and Navigli 2020a). One of the latest
works in this series is SensEmBERT (Scarlini, Pasini, and
Navigli 2020a) which shows the power of language models
combined with a vast amount of knowledge in a semantic net-
work to produce latent semantic representations of nominal
senses in multiple languages. ARES followed this model and
created sense embeddings for the lexical meanings within
a lexical knowledge base. These embeddings lie in a space
comparable to that of contextualized word vectors (Scarlini,
Pasini, and Navigli 2020b).

Supervised Approaches
Supervised approaches use sense-annotated data for their
training. These approaches surpass the knowledge-based
ones in all English data sets, even before introducing pre-
trained language models. These approaches use neural archi-
tectures (Melamud, Goldberger, and Dagan 2016), or SVM
models (Iacobacci, Pilehvar, and Navigli 2016), while still
suffering from the need to create large manually-curated
corpora (knowledge acquisition bottleneck), which reduces
their usability to scale over unseen words (Gale, Church,
and Yarowsky 1992). Automatic data augmentation ap-
proaches (Scarlini, Pasini, and Navigli 2019) developed meth-
ods to cover more words, senses, and languages.
Neural sequence models are trained for end-to-end WSD

by (Raganato, Bovi, and Navigli 2017). They re-framed WSD
as a translation task in that sequences of words are trans-
lated into sequences of senses. Later, some works showed the
potential of contextual representation for WSD (Melamud,
Goldberger, and Dagan 2016; Peters et al. 2018a). Sense em-
beddings initialization using glosses and adapted the skip-
gram objective of word2vec is done by (Chen, Liu, and Sun
2014) to learn and improve the sense embeddings jointly
with word embeddings. Later, by the appearance of NASARI
vectors (Camacho-Collados and Pilehvar 2018), sense em-
beddings were created using structural knowledge from a
large multilingual semantic network. These methods repre-
sent sense embeddings in the same space as the pre-trained
word embeddings, while they suffer from fixed embedding
spaces. Finally, the LMMS representation considers creating
sense-level embeddings with complete coverage of WordNet.
It shows the power of this representation for WSD by applying
a simple Nearest Neighbors (k-NN) method (Loureiro and
Jorge 2019). ARES used this 1-NN method with its represen-
tations and showed improved results in the WSD task.

Language Modelling Representation
Most NLP tasks now use semantic representations derived
from language models. There are static word embeddings and
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contextual embeddings.

Static Word Embeddings Word embeddings are distribu-
tional semantic representations usually with one of two goals:
predict context words given a target word (Skip-Gram), or
the inverse (CBOW) (Mikolov et al. 2013). In both, the target
word is at the center, and the context is considered a fixed-
length window that slides over tokenized text. As a result,
these models produce dense word representations. However,
one limit for word embeddings means conflict around word
types. This limitation affects the capability of these word em-
beddings for those sensitive to their context (Reisinger and
Mooney 2010).

Contextual Word Embeddings The problem mentioned
as a limitation for static word embeddings is solved in this type
of embedding. The critical difference is that the contextual
embeddings are sensitive to the context. Therefore, it allows
the same word types to have different representations accord-
ing to their context. The first work in contextual embeddings
is ELMO (Peters et al. 2018a), followed by BERT (Devlin
et al. 2018), as the state-of-the-art model. The critical fea-
ture of BERT, which makes it different, is the quality of its
representations. Its results are task-specific fine-tuning of pre-
trained neural language models. The recent representations in
which we analyze their effectiveness are based on these two
models (Peters et al. 2018b, 2019).
Transformer-based language models are pretty new in the

NLP field, but there are a few works for analyzing these mod-
els and understanding the structure behind them (Liu et al.
2019; Loureiro et al. 2021). The transformer-based models
have been shown to capture the syntax and be applicable for
solving the NLP problems (Goldberg 2019; Saphra and Lopez
2018). (Jawahar, Sagot, and Seddah 2019) offers a phrasal
representation analysis from BERT captured with the lower
layers. It is also shown that transformer-based models encode
well the human-like parse trees (Hewitt and Manning 2019).
Quantitative analysis of contextualized word embeddings and
sentence embedding models has demonstrated the effective-
ness of the models’ analysis of the semantic roles (Peters et al.
2018a; Conneau et al. 2018). The role of models for encod-
ing sentence structure across a range of syntactic, semantic,
local, and long-range phenomena is examined by (Tenney
et al. 2019) and shows the strength of representations for
syntactic phenomena. The entity type exploration and their
relations are described in (Tenney et al. 2019). The effec-
tiveness of LSTM language models has been shown (Linzen,
Dupoux, and Goldberg 2016; Kuncoro et al. 2018), as well
as understanding their internal representations for predicting
words in a context (Van Schijndel, Mueller, and Linzen 2019).
Furthermore, the LSTM predictions for a word in context
provide the ability to retrieve substitutes, showing how well
the language model has captured the information (Amrami
and Goldberg 2018). Finally, for this LSTM-based contextu-
alized embedding model, some analyses show how well these
models distinguish between usages of words in context (Aina,
Gulordava, and Boleda 2019; Soler et al. 2019).
In terms of a complete overview of neural network ap-

proaches and study of the BERT model, there are some com-
plete recent surveys (Belinkov and Glass 2019; Rogers, Ko-

valeva, and Rumshisky 2020). The geometry of BERT is
quantified in (Reif et al. 2019), which shows how this model
cares about the neighboring tokens. A few studies try to use
knowledge resources and extract semantic information to en-
hance the generalization of pre-trained language models like
BERT (Peters et al. 2019; Levine et al. 2019). Characteriz-
ing the sense representation of BERT using cluster analysis
has also been studied (Chronis and Erk 2020). The study on
BERT’s layers by (Reif et al. 2019) shows how this model
performs for sense representations. The layer-wise perfor-
mance of BERT when applied to the WSD task was studied
in (Loureiro et al. 2021). The difference of our research is to
quantitatively understand to what extent the pre-trained lan-
guage models encode information for the lexical ambiguity
in terms of different word types. We show these pre-trained
contextualized sense embeddings’ behavior when solving the
ambiguousness of part of speech in the text.

Analysis of Language Models for WSD
For analyzing the current language models for WSD, we con-
sider the analysis in two quantitative ways. First, to analyze the
disambiguation performance by extracting embeddings from
different layers of the language model. Second, to analyze the
performance of each system in parts of speech.

Analysis by Layer Performance
In our quantitative analysis, we analyze the performance of
the layer’s representation in each model for each word in part
of speech, i.e., nouns, verbs, adjectives, and adverbs. In this
analysis, we are looking to find which layer produces a more
effective representation for the WSD task. The results of a
previous work (Reif et al. 2019) show the importance of the
intermediate layers of BERT for sense representation, which
was continued in (Loureiro et al. 2021) by separating lay-
ers. These recent contextualized embedding approaches use
the sum of the corresponding representation from the final
four layers of the BERT model by employing a 1NN strat-
egy. The considered models, i.e., LMMS, SensEmBERT, and
ARES, are BERT-based 1NNWSDmethods, and they apply a
pooling procedure to combine representations extracted from
various layers of the model. Because of this reason, we focus
on extracted representation results of each layer of BERT, i.e.,
which layer produces a more effective representation for the
WSD task. Following the settings of previous work in this
analysis (Loureiro et al. 2021), sense representation for each
layer individually obtained for this analysis is learned from
SemCor (Miller et al. 1993a). We show the performance of
the layers in Figure 1. As the figure demonstrates, this ex-
periment shows the effectiveness of the upper layers over the
lower layers. Even for the verbs – which we show later that
are the most challenging part of speech to disambiguate –,
the layer that sums all the representations assigns the correct
senses better than the individual layers. In more detail, the
BERT representation achieves an overall F1 of 85.5 on ad-
verbs, 79.7 on adjectives, 76.2 on nouns, and 62.9 on verbs.
This analysis confirms the previous work and shows that the
current convention of using the sum of the last four layers for
sense representations is sensible, even if not optimal.
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Figure 1: F-measure performance on the English WSD test set for representations extracted from each individual layer of BERT
base and BERT large.

Analysis by Part-of-Speech

Another possible way to analyze the representation models in
WSD is to measure the frequency of mis-disambiguation in
different parts of speech (POS). As Table 9 shows, the type
in which its disambiguation has been correct more than other
types is adverbs. At the same time, verbs are the ones that
are difficult to disambiguate because they have the lowest
mis-disambiguation frequency across all language models. In
each one of the models, disambiguating the nouns is more
accurate than verbs, which confirms the result of previous
work (Loureiro et al. 2021), when the embedding model is
BERT. The coverage of verb senses can explain this disam-
biguation performance difference between verbs and the other
three parts of speeches in WordNet, significantly less than
the coverage of noun senses. To be more specific with our
quantitative POS analysis, we tried to find the type of words
in all datasets with more errors when we applied WSD with
different representations. For this aim, we first introduce an
error rate formula, and second, we use Confusion-Erro table.
In the confusion-error table, we show the rate of confusing
one specific part of speech with other parts of speech that
each embedding approach makes in the disambiguation task.
The error rate in each word type is similar to (Majidi and

Crane 2014) that compares the errors of dependency parsers.
The types include the ones we have in the standard dataset. For
the error rates, first, we introduce the Freq as the frequency
of the times the type has been disambiguated. The second
item is Error Frequency (EF) as the model’s performance in
type disambiguation, the proportion of the times each type is
disambiguated to the total number of disambiguated entities.
Third, we introduce Error Rate (ER), which is the number of
times a type is mis-disambiguated to the frequency of that
type, with formula 1, and we report this measure in our results.
The last item is Weighted Error Rate (WER), as formula 2.
The main reason for introducing this variable is that more
available word types provide more opportunities for learning
them, so errors of that type should cost more. Therefore, we
assigned a weight to the error rate by the error frequency of

Type Freq EF #Mis-D ER WER
Noun 4300 78.7 916 0.21 16.53
Verb 1652 67.3 540 0.33 22.21
Adj. 955 82.6 166 0.17 14.04
Adv. 346 87.1 45 0.13 11.32

Table 1: Error rate analysis of the 1-NN WSD evaluation
framework with ARES representations on the All dataset,
separated by type.

word appearance.

Error Rate (e) =
# type e mis-disambiguated

Frequency of type e
(1)

WER (e) = EF (e)× ER (e) (2)
We report this analysis on BERT and ARES since BERT is

the core language model used in all of the considered methods,
and ARES shows the best results in Table 7, and compare
these two models with our representations. We argue that
errors made by these representations are of the same type.
In Table 10, we observe the rate of errors in each type and
the number of times each type is mis-disambiguated (Mis-
D). The main observation extracted from Table 10 is that
the embedding representations generated from ARES are not
capturing the correct meaning of verb senses than other types.
This result is similar when the embeddings are extracted from
BERT, as Table 2 shows. While the ARES representation is a
contextualized embedding, it fails 67.3% of times to address
the ambiguity of verbs.

The other question about this quantitative analysis is
whether the models made the same type of errors when they
failed to disambiguate a word correctly. In the disambiguation
task, some errors arose when the word type is mistaken; i.e.,.
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Type Freq EF #Mis-D ER WER
Noun 4300 76.2 1023 0.24 18.29
Verb 1652 62.9 613 0.37 23.27
Adj. 955 79.7 194 0.20 15.94
Adv. 346 85.5 50 0.14 11.97

Table 2: Error rate analysis of the 1-NN WSD evaluation
framework with BERT representations on the All dataset,
separated by type.

“close” is a noun in the sentence, but it is mistaken as a verb or
adjective by the model. We show this error using a confusion-
error table for all four parts of speech types, only reported
for nouns because of space. The confusion-error of nouns
disambiguation with other types in all datasets is shown in
Table 3. For example, when BERT disambiguates nouns in
this table, this model .75% of times is correct and considers
the type as a noun. However, this model gets confused with
the noun type with verb type for 0.11% of the time. The noun
type with the adjective type gets confused 0.1% of the time.
BERT model gets confused when disambiguating noun type
instead of adverb for 0.04% of times. These results show that
nouns get confused with verbs and adjectives for all models.
After verbs, the adjective is confusing for almost all models
when disambiguating the nouns. Among nouns, adjectives,
and adverbs, the noun is the part of speech that gets confused
instead of the verb in this task, almost for all the models. The
results of the part of speech tag confusion analysis for verbs
are shown in Table 4. ARES model is less confusing when
disambiguating the type verb compared to other models.

We show how the models get confused when disambiguat-
ing type adverbs with other types in Table 5. This table demon-
strates that LMMS and ARES both effectively disambiguate
the adjectives to the right type. At the same time, SensEm-
BERT and BERT are two models that make mistakes when
disambiguating the adjective that confuses it with nouns. The
last type is an adverb, and the analysis of this type is shown in
Table 6. These results indicate that ARES is the model with
less confusion at disambiguating adverbs than other models.
The SensEmBERT is the next model whose performance is
near ARES regarding disambiguation confusion of adverbs.
On the other hand, LMMS makes the mistake of consider-
ing verbs instead of adverbs. BERT is in the next place after
LMMS of confusing verbs and adverbs.

Model Noun Verb Adj. Adv.
BERT 0.75 0.11 0.1 0.04
LMMS 0.80 0.1 0.07 0.03

SensEmBERT 0.79 0.1 0.09 0.02
ARES 0.81 0.09 0.07 0.03

C-KASE 0.84 0.085 0.06 0.01

Table 3: Confusion-Error table for Noun type by each model.
This table shows how models are confused by the type of
word at the time of disambiguation.

Model Noun Verb Adj. Adv.
BERT 0.26 0.64 0.06 0.04
LMMS 0.26 0.66 0.04 0.04

SensEmBERT 0.27 0.65 0.06 0.02
ARES 0.24 0.69 0.06 0.01

Table 4: Confusion table for Verb. This table shows how
models are confused by the type of word at the time of dis-
ambiguation.

Model Noun Verb Adj. Adv.
BERT 0.1 0.06 0.82 0.02
LMMS 0.09 0.04 0.84 0.03

SensEmBERT 0.09 0.06 0.83 0.02
ARES 0.1 0.05 0.84 0.01

Table 5: Confusion table for Adjective.

New Representation Learning Model
This section presents Contextualized-Knowledge base Aware
Sense Embedding (C-KASE), the novel contextualized-
knowledge-based approach to creating sense representations.
Based on the observations from the analysis of current embed-
ding approaches, we develop this new representation model,
reducing the cons of current models. C-KASE is created by
combining semantic and textual information from the first
paragraph of each sense’s Wikipedia page and the paragraph
of the input document text, which includes the senses. C-
KASE uses the representation power of neural language mod-
els, i.e., BERT and SBERT. The other preliminaries creating
C-KASE are Wikipedia, BabelNet, and Wordnet. C-KASE is
based on three components; Context Retrieval, Word Embed-
ding, and Sense Embedding, Figure 2.

The first component of C-KASE aims to collect contextual
information from the knowledge base, which enhances the
representations. For each ambiguous word in the input text,
we create a set including candidate senses for the word from
Wikipedia. This procedure aims to collect suitable contextual
information from Wikipedia for each given concept in the
semantic network. Then we exploit the mapping between
synsets and Wikipedia pages available in BabelNet and its
taxonomic structure to collect textual information relevant to a
target synset s. For each synset s, we collect all the connected
concepts to s through hyponym and hypernym connections
of the BabelNet knowledge base. We show this set of related
synsets to s by Rs, which is:

Rs = {s′|(s, s′) ∈ E} (3)
E is the set including all hyponyms and hypernyms con-

nections. In this work, for each page ps, we consider the first

Model Noun Verb Adj. Adv.
BERT 0.05 0.08 0.01 0.86
LMMS 0.04 0.11 0.01 0.84

SensEmBERT 0.04 0.06 0.01 0.89
ARES 0.03 0.06 0.01 0.9

Table 6: Confusion table for Adverb.
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Figure 2: Demonstration of the C-KASE representation and
its three components. Component 1) Collecting all Wikipedia
pages for ambiguous words, Component 2) Using hypernymy
and hyponymy relations to extract all synsets for ambiguous
words from Babelnet in set E, Component 3) Concatenat-
ing (word,sense) representation for all senses in E from the
second component with (Document’s paragraph, Wikipedia’s
paragraph) representation from the first component as context.

opening paragraph of the page and compute its lexical vector
by taking the mean of SBERT vector representation of the
sentences in this first paragraph. These lexical representations
are later used for the similarity score finding between ps and
ps′ , for each s′ ∈ Rs by using the weighted overlap measure
from (Pilehvar, Jurgens, and Navigli 2013), which is defined
as follows:

WO(p1, p2) = (
∑
w∈O

1

rp1
w + rp2

w
)(

|O|∑
i=1

1

2i
)−1 (4)

where O is the set of overlapping dimensions of p1 and p2
and rpi

w is the rank of the word w in the lexical vector of pi. We
preferred the weighted overlap over the more common cosine
similarity as it has proven to perform better when comparing
sparse vector representations (Pilehvar, Jurgens, and Navigli
2013). Once we have scored all the (ps, ps′) pairs, we create
partitions of Rs, each comprising all the senses s′ connected
to swith the same relation r, where r can be one among hyper-
nymy, and hyponymy. We then retain from each partition only
the top-k scored senses according to WO(psi , ps′i), which
we set k = 15 in our experiments.

In the second component, we use BERT to extract the given
ambiguous word from the input text. We extract its BERT rep-
resentation for each ambiguous word (mention) of the input.
Using the BabelNet relations of hyponymy and hypernymy,
we extract all synsets of mention from BabelNet (set E). Use
the link structure of BabelNet and Wikipedia; we collect all
the Wikipedia pages for each sense. Finally, we use BERT
representation for the second time to generate vector repre-
sentation for senses. Each word is represented in the settings
as the BERT dimension.

In this last component, we build the final representation of
each mention. From the previous step, we took the represen-
tation of mention, R(m), and the representation of each one

of its senses. We show the representations of each k sense
of m by R(si) which i varies from 1 to k. Our unique rep-
resentations combine the mention representation with sense
representation, concatenating the two vector representations
ofR(m) andR(si). If mentionm has k senses, C-KASE gen-
erates k different representations of R(m, s1), R(m, s2), . . . ,
R(m, sk). Because of the dimension representation of R(m)
and eachR(si), these concatenated representation dimensions
are doubled. The next novelty in our C-KASE representations
is ranking the k senses of each mention based on their rel-
evancy degree to the context. To this aim, we concatenate
representations of the first step. In the first step, we took the
representation of the input text paragraph, which contains the
ambiguous mention, and show it byR(PD), which stands for
representation of the Paragraph of the input Document text. In
the first step, we also took the representation of the first para-
graph of the Wikipedia page, which represents it by R(PW ),
which stands for representation of the first Paragraph of the
Wikipedia page. Finally, we concatenate these two represen-
tations as R(PD,PW ). The dimension of this concatenated
representation is also equal to the word representation, mak-
ing it possible to calculate their cosine similarities. To rank the
senses’ relevancy to the context, we use the cosine similarity
as follows:

Sim(m, si) = Cosine(R(m, si), R(PD,PW )),

for i = 1, . . . , k
(5)

This ranking provides the most similar sense to the context
for each mention. This novelty makes this representation more
effective than the previous contextualized-based embeddings,
especially in word sense disambiguation.
At the end of these three steps, each sense is associated

with a vector that encodes both the contextual information
and semantic knowledge base information from the extracted
context of Wikipedia and its gloss.

WSD Experimental Setup
We present the settings of our evaluation of C-KASE in the En-
glish WSD task. This setup includes the benchmark, C-KASE
setup for disambiguation task, and state-of-the-art WSD mod-
els as our comparison systems. To test each embedding on the
WSD task, we employed the 1-NN algorithm and compared
the disambiguated sense of each word with the ground truth
annotations in the datasets. The nearest neighbors strategy
is effective with pre-trained language models (Loureiro et al.
2021; Scarlini, Pasini, and Navigli 2020b).

Evaluation Benchmark
We use the English WSD test set framework, which is con-
structed by five standard evaluation benchmark datasets1. It is
included Senseval-2 (Edmonds and Cotton 2001), Senseval-
3 (Snyder and Palmer 2004), SemEval-07 (Pradhan et al.
2007), SemEval-13 (Navigli, Jurgens, and Vannella 2013),
SemEval-15 (Moro and Navigli 2015) along with ALL, i.e.,

1http://lcl.uniroma1.it/wsdeval/
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the concatenation of all the test sets (Raganato, Camacho-
Collados, and Navigli 2017). All these datasets are WordNet-
specific and mostly use SemCor (Miller et al. 1993b) as their
training set. The unified benchmark provides 7253 test in-
stances for 4363 sense types, which covers 3663 word types
across four parts of speech: nouns, verbs, adjectives, and ad-
verbs. Details of the number of instances in each part of speech
of all five datasets are presented in Table 8. The sense inven-
tory that is used in this work is WordNet (version3.0), the
main sense inventory for the WSD task in English (Fellbaum
1998).

C-KASE Setup
In our experiments, we use BERT pre-trained cased model.
Among all the configurations reported by(Devlin et al. 2018),
we used the sum of the last four hidden layers as contextual
embeddings of the words since, in our analysis, in the error
modeling section, we show it has better performance. In order
to be able to compare our system with supervised models, we
build a supervised version of our C-KASE representations.
This version combines the gloss and contextual information
with the sense-annotated contexts in SemCor (Miller et al.
1993b), a corpus of 40K sentences where words have been
manually annotated with a WordNet meaning.
We leveraged SemCor to build a representation of each

sense therein. To this end, we followed (Peters et al. 2018a),
given a mention-sense pair (m, s), we collected all the sen-
tences c1, . . . , cn where m appears tagged with s. Then, we
fed all the retrieved sentences into BERT and extracted the em-
beddings BERT(c1,m), . . . ,BERT(cn,m). The final embed-
ding of s was built by concatenating the average of its context
and sense gloss vectors and its representation coming from
SemCor, i.e., the average of BERT(c1,m), . . . , BERT(cn,m).
Finally, we note that when a sense did not appear in SemCor,
we built its embedding by replacing the SemCor part of the
vector with its sense gloss representation.

WSD Model
For WSD modeling, we employed a 1-nearest neighbor
approach– as previous methods in the literature– to test our
representations on theWSD task. For each target wordm in the
test set, we computed its contextual embedding using BERT
and compared it against the embeddings of C-KASE associ-
ated with the senses of m. Hence, we took as a prediction for
the target word the sense corresponding to its nearest neigh-
bor. We note that the embeddings produced by C-KASE are
created by concatenating two BERT representations, i.e., con-
text and sense gloss (see Section Sense Embedding); hence
we repeated the BERT embedding of the target instance to
match the number of dimensions.

Comparison Systems
We compared our representation against the best current per-
forming systems evaluated on the English WSD task. LMMS
is one of these systems which generates sense embedding with
complete coverage of Wordnet. It uses pre-trained ELMO
and BERT models and the relations in a lexical knowledge
base to create contextual embeddings (Loureiro and Jorge

2019). SensEmBERT is the next system that relies on dif-
ferent resources for building sense vectors. These resources
include Wikipedia, BabelNet, NASARI lexical vectors, and
BERT. It computes context-aware representations of BabelNet
senses by combining the semantic and textual information
derived from multilingual resources. This model uses the
BabelNet mapping between WordNet senses and Wikipedia
pages which drops the need for sense-annotated corpora (Scar-
lini, Pasini, and Navigli 2020a). The next comparison system
is ARES, a semi-supervised approach to produce sense em-
beddings for all the word senses in a language vocabulary.
ARES compensates for the lack of manually annotated ex-
amples for many words’ meanings. ARES is the most recent
contextualized word embedding system, to our knowledge.
We also considered BERT a comparison system since it is at
the core of all the considered methods. BERT has also shown
good performance in most NLP tasks using pre-trained neural
networks.

Results
The results of our evaluations on the WSD task are repre-
sented in this section. We show the effectiveness of C-KASE
representation by comparing it with the existing state-of-the-
art models on the standard WSD benchmarks. In Table 7,
we report the results of C-KASE and compare them against
the results obtained from other state-of-the-art approaches
on all the nominal instances of the test sets in the frame-
work of (Raganato, Camacho-Collados, and Navigli 2017).
All performances are reported in terms of F1-measure, i.e.,
the harmonic mean of precision and recall. As we can see,
C-KASE achieves the best results on the datasets compared
to other previous contextualized approaches. It indicates that
C-KASE is competitive with these previous models. These
results show that the novel idea, like creating this C-KASE
representation, has improved the lexical ambiguity. It is a
good indicator of the dependency of the WSD task on the
representation that is aware of the context and the information
extracted from the reference knowledge base.
We also evaluate the effectiveness of our representation

of parts of speeches. The parts of speech in the dataset are
nouns, verbs, adjectives, and adverbs. Table 8 shows the num-
ber of instances in each category. In our second evaluation,
we examined the effect of our representation against previ-
ous models on each word category. Table 9 represents the
F-Measure performance of the 1-NN WSD of the contextual-
ized word embeddings which we considered on All datasets
split by parts of speech.

Conclusion
In this paper, we present C-KASE, a novel approach for cre-
ating sense embeddings considering the knowledge base and
the context of the input document text. We showed that this
context-rich representation is beneficial for lexical ambiguity
in English. The first set ofWSD experiments demonstrates the
effectiveness of C-KASE representations compared to other
state-of-the-art methods, despite relying only on English data.
We further report the WSD performance of our embeddings
on each of the four parts of speech; nouns, verbs, adjectives,
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and adverbs. The results across different datasets show the
high quality of our embeddings in English WSD while si-
multaneously relaxing the requirement for sense-annotated
corpora. The second set of WSD experiments uses a novel
measure of the WSD error of each representation model and
quantifies how likely it is for each model to confuse parts of
speech at the time of disambiguation. Among the different
parts of speech, we observed that the verb is the most chal-
lenging type to disambiguate since its instances in the training
dataset are very few. Future research includes: covering mul-
tiple languages; training on data with more verbs.
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