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Abstract
With the recent growth in computer vision applications,
the question of how fair and unbiased they are has yet
to be explored. There is abundant evidence that the
bias present in training data is reflected in the mod-
els, or even amplified. Many previous methods for im-
age dataset de-biasing, including models based on aug-
menting datasets, are computationally expensive to im-
plement. In this study, we present a fast and effective
model to de-bias an image dataset through reconstruc-
tion and minimizing the statistical dependence between
intended variables. Our architecture includes a U-net to
reconstruct images, combined with a pre-trained classi-
fier which penalizes the statistical dependence between
target attribute and the protected attribute. We evalu-
ate our proposed model on CelebA dataset, compare
the results with two state-of-the-art de-biasing method,
and show that the model achieves a promising fairness-
accuracy combination.

Introduction
Due to their increased usage within myriad software applica-
tions, artificial intelligence algorithms now influence many
aspects of people’s lives, particularly when they are embed-
ded into decision-support tools used by educators, govern-
ment agencies, and various industry sectors. Thus, it is cru-
cial to make sure that these algorithms are scrutinized to en-
sure fairness and remove unjust biases. Bias has been shown
to exist in several deployed AI systems, including the well
known Correlational Offender Management Profiling for Al-
ternative Sanctions (COMPAS). COMPAS is an automated
decision making system used by the US criminal justice sys-
tem for assessing a criminal defendant’s likelihood of re-
offending. By exploring the risk scores assigned to individu-
als, this system has been shown to be biased against African
Americans (Chouldechova 2017). Other examples include
a version of Google’s targeted advertising system in which
highly paid jobs were advertised more frequently to men vs.
women (Lambrecht and Tucker 2019).

Bias in computer vision is a major problem, often stem-
ming from the training datasets used for computer vision
models (Tommasi et al. 2017). There is evidence suggesting
the existence of multiple types of bias, including capture and
selection bias, in popular image datasets (Torralba and Efros

2011). The problems arising from bias in computer vision
can manifest in different ways. For instance, it is observed
that in activity recognition models, when the datasets con-
tain gender bias, the bias is further amplified by the models
trained on those datasets (Zhao et al. 2017). Face recogni-
tion models may exhibit lower accuracy for some classes of
race or gender (Buolamwini and Gebru 2018).

This paper addresses the issue of a decision-making pro-
cess being dependent on protected attributes, where this de-
pendence should ideally be avoided. From a legal perspec-
tive, a protected attribute is an attribute upon which discrim-
ination is illegal (Pessach and Shmueli 2020), e.g. gender or
race. Let D = (X ,S,Y) be a dataset, where X represents
unprotected attributes, S is the protected attribute, and Y be
the target attribute. If in the dataset D, the target attribute is
not independent of the protected attribute (Y ̸⊥ S), then it is
very likely that the decisions Ŷ made by a decision-making
system which is trained on D, is also not independent of the
protected attribute (Ŷ ̸⊥ S).

We propose a model to reconstruct an image dataset to
reduce statistical dependency between a protected attribute
and target attribute. We modify a U-net (Ronneberger, Fis-
cher, and Brox 2015) to reconstruct the image dataset and
apply the Hilbert-Schmidt norm of the cross-covariance op-
erator (Gretton et al. 2005a) between reproducing kernel
Hilbert spaces of the target attribute and the protected at-
tribute, as a measure of statistical dependence. Unlike many
previous algorithms, our proposed method doesn’t require
training new classifiers on the unbiased data, but instead re-
constructing images in a way that reduces the bias entailed
by using the same classifiers.

In Section Methodology we present the problem, the no-
tion of independence, and our proposed methodology. In
Section Experiments we describe the CelebA dataset and
the choice of feature categorization, introduce the baseline
model with which we compare our results (Ramaswamy,
Kim, and Russakovsky 2021), our model’s implementation
details, and finally present the experiments and results.

Background
Bias mitigation methods can be divided into three general
categories of pre-process, in-process, and post-process. Pre-
process methods include modifying the training dataset be-
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fore feeding it to the machine learning model. In-process
methods include adding regularizing terms to penalize some
representation of bias during the training process. Finally,
post-process methods include modifying the final decisions
of the classifiers (Hardt, Price, and Srebro 2016). Kamiran
and Calders (Kamiran and Calders 2012) propose meth-
ods such as suppression which includes removing attributes
highly correlated with the protected attribute, reweighing,
i.e. assigning weights to different instances in the data, and
massaging the data to change labels of some objects. Bias
mitigation methods often come at the expense of losing
some accuracy, and these preliminary methods usually entail
higher fairness-utility cost. More sophisticated methods with
better results include using generative models to augment
the biased training dataset with unbiased data (Ramaswamy,
Kim, and Russakovsky 2021), or training the models on en-
tirely synthetic unbiased data (Rajabi and Garibay 2021).
(Wang et al. 2020) provide a set of analyses and a bench-
mark to evaluate and compare bias mitigation techniques in
visual recognition models.

Works such as (Wang, Narayanan, and Russakovsky
2020; Yang et al. 2020) suggest methods to mitigate bias
in visual datasets. Several studies have deployed GANs for
bias mitigation in image datasets. For example, (Sattigeri
et al. 2019) modified the value function of GAN to gener-
ate fair image datasets. FairFaceGAN (Hwang et al. 2020)
implements a facial image-to-image translation, preventing
unwanted translation in protected attributes. Ramaswamy et
al. propose a model to produce training data that is balanced
for each protected attribute, by perturbing the latent vec-
tor of a GAN (Ramaswamy, Kim, and Russakovsky 2021).
Other studies employing GANs for fair data generation in-
clude (Choi et al. 2020; Sharmanska et al. 2020).

A variety of techniques beyond GANs have been applied
to the problems of fairness in AI. A deep information max-
imization adaptation network was used to reduce racial bias
in face image datasets (Wang et al. 2019a), and reinforce-
ment learning was used to learn a race-balanced network
in (Wang and Deng 2019). Wang et al. propose a genera-
tive few-shot cross-domain adaptation algorithm to perform
fair cross-domain adaption and improve performance on mi-
nority category (Wang et al. 2021). The work in (Xu et al.
2021) proposes adding a penalty term into the softmax loss
function to mitigate bias and improve fairness performance
in face recognition. (Quadrianto, Sharmanska, and Thomas
2019) propose a method to discover fair representations of
data with the same semantic meaning of the input data. Ad-
versarial learning has also successfully been deployed for
this task (Zhang, Lemoine, and Mitchell 2018; Wang et al.
2019b).

Methodology
Consider a dataset D = (X ,S,Y), where X is the set of im-
ages, Y = {+1,−1} is the target attribute such as attractive-
ness, and S = {A,B,C, ...} is the protected attribute such
as gender. Assume there exists a classifier f : (X ) → Y ,
such that the classifier’s prediction for target attribute is not
independent from the protected attribute, i.e. f(X ) ̸⊥ S .

Our objective is to design a transformation g : X → eX ,
such that 1) f( eX ) ⊥ S, i.e. the classifier’s predictions for
target attribute is independent of the protected attribute , and
2) f( eX ) ≈ f(X ), i.e. the classifier still achieves high accu-
racy.

In other words we want to train a network to transform our
original images, such that if the classifiers that are trained
on the original and unmodified images, are used to pre-
dict the target attribute (attractiveness in our example) from
the transformed version of an image, they still achieve high
accuracy, while the predictions of those classifiers are in-
dependent of the protected attribute (gender in our exam-
ple). It should be noted that we are not seeking to train
new classifiers, but rather only aim to modify the input im-
ages. This is a main distinction between our methodology
and most of other techniques (e.g. (Quadrianto, Sharman-
ska, and Thomas 2019) and (Ramaswamy, Kim, and Rus-
sakovsky 2021)), in which the process includes training new
classifiers on modified new image datasets and achieving
fair classifiers.

Our proposed model consists of a U-net (Ronneberger,
Fischer, and Brox 2015) as the neural network that trans-
forms the original images. This type of network was orig-
inally proposed for medical image segmentation, and has
been widely used since its introduction. The encoder-
decoder network consists of two paths, a contracting path
consisting of convolution and max pooling layers, and a con-
secutive expansive path consisting of upsampling of the fea-
ture map and convolutions. Contrary to (Ronneberger, Fis-
cher, and Brox 2015) where each image is provided with a
segmented image label, we provide our U-net with the ex-
act same image as the label, and alter the loss function from
cross-entropy to mean squared error, so that the network gets
trained to produce an image as close to the original image as
possible, in a pixel-wise manner.

While some previous fairness studies consider decorre-
lating the target attribute from the protected attributes, what
must be ultimately sought however, is independence be-
tween the protected attribute and the target attribute. Dealing
with two random variables which are uncorrelated is eas-
ier than independence, as two random variables might have
a zero correlation, and still be dependent (e.g. two random
variables A and B with recordings A = [−2,−1, 0, 1, 2] and
B = [4, 1, 0, 1, 4] have zero covariance, but are apparently
not independent). Given a Borel probability distribution Pab

defined on a domain A × B, and respective marginal distri-
butions Pa and Pb on A and B, independence of a and b
(a |= b) is equal to Pab factorizing as Pa and Pb. Further-
more, two random variables a and b are independent, if and
only if any bounded continuous function of the two random
variables are uncorrelated (Gretton et al. 2005b).

Let F and G denote all real-value functions defined on
domains A and B respectively. In their paper (Gretton
et al. 2005a) define the Hilbert-Schmidt norm of the cross-
covariance operator:

HSIC(Pab,F ,G) := ||Cab||2HS (1)

where Cab is the cross-covariance operator. They show that
if ||Cab||2HS is zero, then cov(f, g) will be zero for any
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Figure 1: Our model consists of an encoder-decoder (U-net)
and a double-output pre-trained ResNet classifier. First, the
output batch of the U-net (reconstructed images) is com-
pared with the original batch of images by calculating MSE
loss. Then, the output batch of the U-net passes through the
ResNet and statistical dependency of the two vectors is cal-
culated by HSIC. Detailed architecture of the U-net is de-
scribed in the supplementary material.

f ∈ F and g ∈ G, and therefore the random variables
a and b will be independent. Furthermore, they show if
Z := (a1, b1), ..., (an, bn) ∈ A×B are a series of n indepen-
dent observations drawn from Pab, then a (biased) estimator
of HSIC is (Gretton et al. 2005a):

HSIC(Z,F ,G) := (n− 1)−2tr(KHLH) (2)

where H,K,L ∈ Rn×n, K and L are Gram matrices (Horn
and Johnson 2012), Kij := k(ai, aj), Lij := l(bi, bj), k
and l are universal kernels, and Hij := δij − n−1 centers
the observations in feature space. We use Hilbert-Schmidt
independence criteria to penalize the model for dependence
between the target attribute and the protected attribute.

Training Loss Function

We seek to modify a set of images, such that 1) the pro-
duced images are close to the original images, and 2) the
predicted target attribute is independent from the predicted
protected attribute. In the optimization problem, image qual-
ity (1) is measured by pixel-wise MSE loss. For indepen-
dence (2), consider our U-net network as a mapping from
original image to the transformed image, i.e. Uw(x) = ex.
Consider also a function h : X → [0, 1] × [0, 1], where
h(xi) = (h1(xi), h2(xi)) = (P(yi = 1|xi),P(si = 1|xi)).
Our objective is to train the parameters of Uw such that
h1(Uw(x)) |= h2(Uw(x)), i.e. h1(Uw(x)) is independent of
h2(Uw(x)) .

Given X representing a batch of N training images and eX
representing the transformed batch, our formal optimization
problem is as follows:

minimize
Uw

1

NCWH

NX
n=1

X
i;j;k

(xn
ijk − exn

ijk)
2

| {z }
image accuracy

+ λ× HSIC(h1( eX), h2( eX))| {z }
independence

(3)

where N is the number of samples, C is the number of
channels of an image, W is the width of an image, H is
the height of an image, and λ is the parameter that con-
trols the trade-off between accuracy of the transformed im-
ages and independence (fairness). In practice, the mapping
function Uw that we use is a U-net, the function h(·) is a
pre-trained classifier with two outputs h1 and h2, each be-
ing the output of a Sigmoid function within the range of
[0, 1], where h1 = P(Y = 1|X) (a vector of size N ), and
h2 = P(S = 1|X) (also a vector of size N ), and HSIC(·, ·)
denotes Hilbert-Schmidt Independence Criteria.

Figure 1 shows the network architecture and a schematic
of the training procedure. Consider a batch of original im-
ages X entering the U-net. The U-net then produces the re-
constructed images Uw(X) = eX . To calculate the image ac-
curacy part of the loss function, the original image batch X
is provided as label and the Mean Squared Error is calculated
to measure the accuracy of the reconstructed images. The
ResNet component in Figure 1 is our h(·) function as de-
scribed before, which is a pre-trained ResNet classifier that
takes as input a batch of images and returns two probability
vectors. The second part of the loss function, independence,
is calculated by entering the reconstructed images eX into
this ResNet classifier, and calculating the HSIC between the
two vectors.

As noted before, the image dataset is reconstructed in a
way that using them on the original biased classifiers, will
result in an improvement in classifications. This is dissim-
ilar to some previous works such as (Ramaswamy, Kim,
and Russakovsky 2021) and (Quadrianto, Sharmanska, and
Thomas 2019), in which the model training process includes
augmenting the original dataset with generated images and
training new fair classifiers (Ramaswamy, Kim, and Rus-
sakovsky 2021), or discovering fair representations of im-
ages and subsequently training new classifiers (Quadrianto,
Sharmanska, and Thomas 2019).

Experiments
In this section, we test the methodology described in Sec-
tion Methodology on CelebA dataset (Liu et al. 2015). We
first introduce the CelebA dataset and the attribute categories
in CelebA. We then describe the implementation details of
our model. Subsequently, the method described in the work
of (Ramaswamy, Kim, and Russakovsky 2021) and the two
versions of it that we use as baseline models to compare our
results with are introduced. Finally, we introduce evaluation
metrics and present the results.
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