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Abstract
With the recent growth in computer vision applications,
the question of how fair and unbiased they are has yet
to be explored. There is abundant evidence that the
bias present in training data is reflected in the mod-
els, or even amplified. Many previous methods for im-
age dataset de-biasing, including models based on aug-
menting datasets, are computationally expensive to im-
plement. In this study, we present a fast and effective
model to de-bias an image dataset through reconstruc-
tion and minimizing the statistical dependence between
intended variables. Our architecture includes a U-net to
reconstruct images, combined with a pre-trained classi-
fier which penalizes the statistical dependence between
target attribute and the protected attribute. We evalu-
ate our proposed model on CelebA dataset, compare
the results with two state-of-the-art de-biasing method,
and show that the model achieves a promising fairness-
accuracy combination.

Introduction
Due to their increased usage within myriad software applica-
tions, artificial intelligence algorithms now influence many
aspects of people’s lives, particularly when they are embed-
ded into decision-support tools used by educators, govern-
ment agencies, and various industry sectors. Thus, it is cru-
cial to make sure that these algorithms are scrutinized to en-
sure fairness and remove unjust biases. Bias has been shown
to exist in several deployed AI systems, including the well
known Correlational Offender Management Profiling for Al-
ternative Sanctions (COMPAS). COMPAS is an automated
decision making system used by the US criminal justice sys-
tem for assessing a criminal defendant’s likelihood of re-
offending. By exploring the risk scores assigned to individu-
als, this system has been shown to be biased against African
Americans (Chouldechova 2017). Other examples include
a version of Google’s targeted advertising system in which
highly paid jobs were advertised more frequently to men vs.
women (Lambrecht and Tucker 2019).

Bias in computer vision is a major problem, often stem-
ming from the training datasets used for computer vision
models (Tommasi et al. 2017). There is evidence suggesting
the existence of multiple types of bias, including capture and
selection bias, in popular image datasets (Torralba and Efros

2011). The problems arising from bias in computer vision
can manifest in different ways. For instance, it is observed
that in activity recognition models, when the datasets con-
tain gender bias, the bias is further amplified by the models
trained on those datasets (Zhao et al. 2017). Face recogni-
tion models may exhibit lower accuracy for some classes of
race or gender (Buolamwini and Gebru 2018).

This paper addresses the issue of a decision-making pro-
cess being dependent on protected attributes, where this de-
pendence should ideally be avoided. From a legal perspec-
tive, a protected attribute is an attribute upon which discrim-
ination is illegal (Pessach and Shmueli 2020), e.g. gender or
race. Let D = (X ,S,Y) be a dataset, where X represents
unprotected attributes, S is the protected attribute, and Y be
the target attribute. If in the dataset D, the target attribute is
not independent of the protected attribute (Y ̸⊥ S), then it is
very likely that the decisions Ŷ made by a decision-making
system which is trained on D, is also not independent of the
protected attribute (Ŷ ̸⊥ S).

We propose a model to reconstruct an image dataset to
reduce statistical dependency between a protected attribute
and target attribute. We modify a U-net (Ronneberger, Fis-
cher, and Brox 2015) to reconstruct the image dataset and
apply the Hilbert-Schmidt norm of the cross-covariance op-
erator (Gretton et al. 2005a) between reproducing kernel
Hilbert spaces of the target attribute and the protected at-
tribute, as a measure of statistical dependence. Unlike many
previous algorithms, our proposed method doesn’t require
training new classifiers on the unbiased data, but instead re-
constructing images in a way that reduces the bias entailed
by using the same classifiers.

In Section Methodology we present the problem, the no-
tion of independence, and our proposed methodology. In
Section Experiments we describe the CelebA dataset and
the choice of feature categorization, introduce the baseline
model with which we compare our results (Ramaswamy,
Kim, and Russakovsky 2021), our model’s implementation
details, and finally present the experiments and results.

Background
Bias mitigation methods can be divided into three general
categories of pre-process, in-process, and post-process. Pre-
process methods include modifying the training dataset be-
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fore feeding it to the machine learning model. In-process
methods include adding regularizing terms to penalize some
representation of bias during the training process. Finally,
post-process methods include modifying the final decisions
of the classifiers (Hardt, Price, and Srebro 2016). Kamiran
and Calders (Kamiran and Calders 2012) propose meth-
ods such as suppression which includes removing attributes
highly correlated with the protected attribute, reweighing,
i.e. assigning weights to different instances in the data, and
massaging the data to change labels of some objects. Bias
mitigation methods often come at the expense of losing
some accuracy, and these preliminary methods usually entail
higher fairness-utility cost. More sophisticated methods with
better results include using generative models to augment
the biased training dataset with unbiased data (Ramaswamy,
Kim, and Russakovsky 2021), or training the models on en-
tirely synthetic unbiased data (Rajabi and Garibay 2021).
(Wang et al. 2020) provide a set of analyses and a bench-
mark to evaluate and compare bias mitigation techniques in
visual recognition models.

Works such as (Wang, Narayanan, and Russakovsky
2020; Yang et al. 2020) suggest methods to mitigate bias
in visual datasets. Several studies have deployed GANs for
bias mitigation in image datasets. For example, (Sattigeri
et al. 2019) modified the value function of GAN to gener-
ate fair image datasets. FairFaceGAN (Hwang et al. 2020)
implements a facial image-to-image translation, preventing
unwanted translation in protected attributes. Ramaswamy et
al. propose a model to produce training data that is balanced
for each protected attribute, by perturbing the latent vec-
tor of a GAN (Ramaswamy, Kim, and Russakovsky 2021).
Other studies employing GANs for fair data generation in-
clude (Choi et al. 2020; Sharmanska et al. 2020).

A variety of techniques beyond GANs have been applied
to the problems of fairness in AI. A deep information max-
imization adaptation network was used to reduce racial bias
in face image datasets (Wang et al. 2019a), and reinforce-
ment learning was used to learn a race-balanced network
in (Wang and Deng 2019). Wang et al. propose a genera-
tive few-shot cross-domain adaptation algorithm to perform
fair cross-domain adaption and improve performance on mi-
nority category (Wang et al. 2021). The work in (Xu et al.
2021) proposes adding a penalty term into the softmax loss
function to mitigate bias and improve fairness performance
in face recognition. (Quadrianto, Sharmanska, and Thomas
2019) propose a method to discover fair representations of
data with the same semantic meaning of the input data. Ad-
versarial learning has also successfully been deployed for
this task (Zhang, Lemoine, and Mitchell 2018; Wang et al.
2019b).

Methodology
Consider a dataset D = (X ,S,Y), where X is the set of im-
ages, Y = {+1,−1} is the target attribute such as attractive-
ness, and S = {A,B,C, ...} is the protected attribute such
as gender. Assume there exists a classifier f : (X ) → Y ,
such that the classifier’s prediction for target attribute is not
independent from the protected attribute, i.e. f(X ) ̸⊥ S .

Our objective is to design a transformation g : X → X̃ ,
such that 1) f(X̃ ) ⊥ S, i.e. the classifier’s predictions for
target attribute is independent of the protected attribute , and
2) f(X̃ ) ≈ f(X ), i.e. the classifier still achieves high accu-
racy.

In other words we want to train a network to transform our
original images, such that if the classifiers that are trained
on the original and unmodified images, are used to pre-
dict the target attribute (attractiveness in our example) from
the transformed version of an image, they still achieve high
accuracy, while the predictions of those classifiers are in-
dependent of the protected attribute (gender in our exam-
ple). It should be noted that we are not seeking to train
new classifiers, but rather only aim to modify the input im-
ages. This is a main distinction between our methodology
and most of other techniques (e.g. (Quadrianto, Sharman-
ska, and Thomas 2019) and (Ramaswamy, Kim, and Rus-
sakovsky 2021)), in which the process includes training new
classifiers on modified new image datasets and achieving
fair classifiers.

Our proposed model consists of a U-net (Ronneberger,
Fischer, and Brox 2015) as the neural network that trans-
forms the original images. This type of network was orig-
inally proposed for medical image segmentation, and has
been widely used since its introduction. The encoder-
decoder network consists of two paths, a contracting path
consisting of convolution and max pooling layers, and a con-
secutive expansive path consisting of upsampling of the fea-
ture map and convolutions. Contrary to (Ronneberger, Fis-
cher, and Brox 2015) where each image is provided with a
segmented image label, we provide our U-net with the ex-
act same image as the label, and alter the loss function from
cross-entropy to mean squared error, so that the network gets
trained to produce an image as close to the original image as
possible, in a pixel-wise manner.

While some previous fairness studies consider decorre-
lating the target attribute from the protected attributes, what
must be ultimately sought however, is independence be-
tween the protected attribute and the target attribute. Dealing
with two random variables which are uncorrelated is eas-
ier than independence, as two random variables might have
a zero correlation, and still be dependent (e.g. two random
variables A and B with recordings A = [−2,−1, 0, 1, 2] and
B = [4, 1, 0, 1, 4] have zero covariance, but are apparently
not independent). Given a Borel probability distribution Pab

defined on a domain A × B, and respective marginal distri-
butions Pa and Pb on A and B, independence of a and b
(a |= b) is equal to Pab factorizing as Pa and Pb. Further-
more, two random variables a and b are independent, if and
only if any bounded continuous function of the two random
variables are uncorrelated (Gretton et al. 2005b).

Let F and G denote all real-value functions defined on
domains A and B respectively. In their paper (Gretton
et al. 2005a) define the Hilbert-Schmidt norm of the cross-
covariance operator:

HSIC(Pab,F ,G) := ||Cab||2HS (1)

where Cab is the cross-covariance operator. They show that
if ||Cab||2HS is zero, then cov(f, g) will be zero for any
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Figure 1: Our model consists of an encoder-decoder (U-net)
and a double-output pre-trained ResNet classifier. First, the
output batch of the U-net (reconstructed images) is com-
pared with the original batch of images by calculating MSE
loss. Then, the output batch of the U-net passes through the
ResNet and statistical dependency of the two vectors is cal-
culated by HSIC. Detailed architecture of the U-net is de-
scribed in the supplementary material.

f ∈ F and g ∈ G, and therefore the random variables
a and b will be independent. Furthermore, they show if
Z := (a1, b1), ..., (an, bn) ∈ A×B are a series of n indepen-
dent observations drawn from Pab, then a (biased) estimator
of HSIC is (Gretton et al. 2005a):

HSIC(Z,F ,G) := (n− 1)−2tr(KHLH) (2)

where H,K,L ∈ Rn×n, K and L are Gram matrices (Horn
and Johnson 2012), Kij := k(ai, aj), Lij := l(bi, bj), k
and l are universal kernels, and Hij := δij − n−1 centers
the observations in feature space. We use Hilbert-Schmidt
independence criteria to penalize the model for dependence
between the target attribute and the protected attribute.

Training Loss Function

We seek to modify a set of images, such that 1) the pro-
duced images are close to the original images, and 2) the
predicted target attribute is independent from the predicted
protected attribute. In the optimization problem, image qual-
ity (1) is measured by pixel-wise MSE loss. For indepen-
dence (2), consider our U-net network as a mapping from
original image to the transformed image, i.e. Uw(x) = x̃.
Consider also a function h : X → [0, 1] × [0, 1], where
h(xi) = (h1(xi), h2(xi)) = (P(yi = 1|xi),P(si = 1|xi)).
Our objective is to train the parameters of Uw such that
h1(Uw(x)) |= h2(Uw(x)), i.e. h1(Uw(x)) is independent of
h2(Uw(x)) .

Given X representing a batch of N training images and X̃
representing the transformed batch, our formal optimization
problem is as follows:

minimize
Uw

1

NCWH

N∑
n=1

∑
i,j,k

(xn
ijk − x̃n

ijk)
2

︸ ︷︷ ︸
image accuracy

+ λ× HSIC(h1(X̃), h2(X̃))︸ ︷︷ ︸
independence

(3)

where N is the number of samples, C is the number of
channels of an image, W is the width of an image, H is
the height of an image, and λ is the parameter that con-
trols the trade-off between accuracy of the transformed im-
ages and independence (fairness). In practice, the mapping
function Uw that we use is a U-net, the function h(·) is a
pre-trained classifier with two outputs h1 and h2, each be-
ing the output of a Sigmoid function within the range of
[0, 1], where h1 = P(Y = 1|X) (a vector of size N ), and
h2 = P(S = 1|X) (also a vector of size N ), and HSIC(·, ·)
denotes Hilbert-Schmidt Independence Criteria.

Figure 1 shows the network architecture and a schematic
of the training procedure. Consider a batch of original im-
ages X entering the U-net. The U-net then produces the re-
constructed images Uw(X) = X̃ . To calculate the image ac-
curacy part of the loss function, the original image batch X
is provided as label and the Mean Squared Error is calculated
to measure the accuracy of the reconstructed images. The
ResNet component in Figure 1 is our h(·) function as de-
scribed before, which is a pre-trained ResNet classifier that
takes as input a batch of images and returns two probability
vectors. The second part of the loss function, independence,
is calculated by entering the reconstructed images X̃ into
this ResNet classifier, and calculating the HSIC between the
two vectors.

As noted before, the image dataset is reconstructed in a
way that using them on the original biased classifiers, will
result in an improvement in classifications. This is dissim-
ilar to some previous works such as (Ramaswamy, Kim,
and Russakovsky 2021) and (Quadrianto, Sharmanska, and
Thomas 2019), in which the model training process includes
augmenting the original dataset with generated images and
training new fair classifiers (Ramaswamy, Kim, and Rus-
sakovsky 2021), or discovering fair representations of im-
ages and subsequently training new classifiers (Quadrianto,
Sharmanska, and Thomas 2019).

Experiments
In this section, we test the methodology described in Sec-
tion Methodology on CelebA dataset (Liu et al. 2015). We
first introduce the CelebA dataset and the attribute categories
in CelebA. We then describe the implementation details of
our model. Subsequently, the method described in the work
of (Ramaswamy, Kim, and Russakovsky 2021) and the two
versions of it that we use as baseline models to compare our
results with are introduced. Finally, we introduce evaluation
metrics and present the results.
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Figure 2: Examples of CelebA dataset original images. Images in the first row are labeled not Male and images in the second
row are labeled Male. In each row, the first three images are labeled Attractive and the last three images are labeled not
Attractive.

CelebA dataset

CelebA is a popular dataset that is widely used for training
and testing models for face detection, particularly recognis-
ing facial attributes. It consists of 202,599 face images of
celebrities, with 10,177 identities. Each image is annotated
with 40 different binary attributes describing the image,
including attributes such as Black Hair, Pale Skin,
Wavy Hair, Oval Face, Pointy Nose, and other at-
tributes such as Male, Attractive, Smiling, etc. The
CelebA dataset is reported to be biased (Zhang, Wang, and
Zhu 2018). In this experiment, we consider Male attribute
as the protected attribute (with Male = 0 showing the im-
age does not belong to a man and Male = 1 showing the
image belongs to a man), and Attractive to be the target
attribute. We divide the dataset into train and test sets, with
train set containing 182,599 and test set containing 20,000
images. In the training set, 67.91% of images with Male =
0 are annotated to be attractive (Attractive = 1), while
only 27.93% of images with Male = 1 are annotated as be-
ing attractive (Attractive = 1). This shows bias exists
against images with Male = 1.

In order to compare our results with (Ramaswamy, Kim,
and Russakovsky 2021), we follow their categorization of
CelebA attributes. Leaving out Male as the protected at-
tribute, among the rest 39 attributes in CelebA dataset, (Ra-
maswamy, Kim, and Russakovsky 2021) eliminates some
attributes such as Blurry and Bald as they contain less
than 5% positive images. The remaining 26 attributes is
subsequently categorized into three groups. inconsistently-
labeled attributes are the ones that by visually examining
sets of examples, the authors often disagree with the label-
ing and could not distinguish between positive and nega-
tive examples (Ramaswamy, Kim, and Russakovsky 2021).
This group includes attributes such as Straight Hair,
and Big Hair. The second group of attributes are the ones
that are called gender-dependent and the images are la-
beled to have (or not have) attributes based on the perceived

gender (Ramaswamy, Kim, and Russakovsky 2021). These
include attributes such as Young, Arched Eyebrows
and Receding Hairline. Finally, the last group of at-
tributes are called gender-independent. These attributes are
fairly consistently labeled and are not much dependent on
gender expression. This group includes attributes such as
Black Hair, Bangs, and Wearing Hat. The list of
all attributes is provided in supplementary material.

Attribute classifiers
For attribute classifiers, we use ResNet-18 pre-trained on
ImageNet, in which the last layer is replaced with a layer
of size one, along with a Sigmoid activation for binary clas-
sification. We train all models for 5 epochs with batch sizes
of 128. We use the Stochastic Gradient Descent optimizer
with a learning rate of 1e-3 and momentum of 0.9. We use
a step learning rate decay with step size of 7 and factor of
0.1. After training, we will have 26 classifiers that receive an
image and perform a binary classification on their respective
attribute.

Implementation details
As shown in Figure 1, a ResNet-18 network is used to ac-
company the U-net to produce predictions for Male and
Attractive. Prior to training the U-net, the ResNet-18
(Russakovsky et al. 2015) which is pre-trained on ImageNet,
is modified by replacing its output layer with a layer of size
two, outputing the probability of attractiveness and gender.
The ResNet-18 is then trained for 5 epochs on the train set,
with a batch size of 128. We use the Stochastic Gradient
Descent optimizer with a learning rate of 1e-3 and momen-
tum of 0.9. We use a step learning rate decay with step size
of 7 and factor of 0.1. After the ResNet is trained and pre-
pared, we train the U-net as described in Section Methodol-
ogy on the train set. The detailed architecture of the U-net
is described in Supplementary Material. In our implemen-
tation of biased estimator of HSIC estimator in Equation 2,
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Figure 3: Examples of CelebA dataset images and how the model reconstructs them. The first row shows a set of images from
the original testing set, and the second row shows the reconstructed images.

we use Gaussian RBF kernel function for k(·, ·) and l(·, ·).
The training was conducted on a machine with two NVIDIA
GeForce RTX 3090, and each training of the U-Net took 1
hour. When the training is complete, the U-net is ready to
reconstruct images. Figure 3 shows six examples of how the
U-net modifies the original images. We train our model for
5 epochs with an λ = 0.07.

Comparison with baseline models
We compare our results with Ramaswamy et al.’s method,
described in their paper ‘Fair Attribute Classification
through Latent Space De-biasing’ (Ramaswamy, Kim, and
Russakovsky 2021). Building on work by (Denton et al.
2019) which demonstrates a method to learn interpretable
image modification directions, they develop an improved
method by perturbing latent vector of a GAN, to produce
training data that is balanced for each protected attribute.
By augmenting the original dataset with the generated data,
they train target classifiers on the augmented dataset, and
show that these classifiers will be fair, with high accuracy.
The second model that we compare our results with is ex-
plicit removal of biases from neural network embeddings,
presented in (Alvi, Zisserman, and Nellåker 2018). The au-
thors provide an algorithm to remove multiple sources of
variation from the feature representation of a network. This
is achieved by including secondary branches in a neural net-
work with the aim to minimize a confusion loss, which in
turn seeks to change the feature representation of data such
that it becomes invariant to the spurious variations that are
desired to be removed.

We implement Ramaswamy et al.’s method as follows: As
mentioned in their paper, we used progressive GAN with
512-D latent space trained on the CelebA training set from
the PyTorch GAN Zoo. We use 10,000 synthetic images and
label the synthetic images with a ResNet-18 (modified by
adding a fully connected layer with 1,000 neurons). Then
we trained a linear SVM to learn the hyper-planes in the
latent space as proposed in the original paper. We gener-

ate Xsyn (160,000 images) to generate a synthetic dataset
which aims to de-bias Male from all 26 attributes one by
one. Next, we train ResNet-18 classifiers on the new datasets
consisting of augmenting X and Xsyn. We call this model
as GANDeb. We use the implementation of (Alvi, Zisser-
man, and Nellåker 2018) with the uniform confusion loss
−(1/|D|)

∑
d log qd provided in (Wang et al. 2020).

Evaluation metrics
In evaluating the results of our model with the baseline mod-
els, three metrics are used. To capture the accuracy of the
classifiers, we measure the average precision. This metric
combines precision and recall at every position and com-
putes the average. A higher average precision (AP) is de-
sired. To measure fairness, there are multiple metrics pro-
posed in the literature (Mehrabi et al. 2021). Among the
most commonly used metrics is demographic parity (DP).
This metric captures the disparity of receiving a positive de-
cision among different protected groups (|P (Ŷ = 1|S =

0) − P (Ŷ = 1|S = 1)|). A smaller DP shows a fairer clas-
sification and is desired. Finally for our last fairness mea-
sure, we follow (Lokhande et al. 2020) and (Ramaswamy,
Kim, and Russakovsky 2021) and use difference in equal-
ity of opportunity (DEO), i.e. the absolute difference be-
tween the true positive rates for both gender expressions
(|TPR(S = 0) − TPR(S = 1)|). A smaller DEO is de-
sired.

Results
All the values reported in this section, are evaluated on the
same test set. Prior to comparing the results of our method
with the comparison models, to assess the original train-
ing data, the performance of baseline, i.e. classifiers being
trained on the original train set, and tested on the test set
is presented. The AP, DP, and DEO values of classifiers
trained on the original training set is shown in Table 1 under
Baseline. Looking into Baseline values, the AP of classi-
fiers for gender-independent category of attributes is higher
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than gender-dependent category, and the AP of inconsistent
category is less than the other two categories. As expected,
DP and DEO for gender-dependent category of attributes is
higher than the other two categories.

In Table 1, we compare our model with GAN Debiasing
(GanDeb) (Ramaswamy, Kim, and Russakovsky 2021), Ad-
versarial debiasing (AdvDb) presented in (Alvi, Zisserman,
and Nellåker 2018), and the Baseline on the original data.
Looking into the average precision scores, the results show
that GanDeb is slightly performing better than Ours. This is
anticipated, since half of the training data for GanDeb con-
sists of the original images, and therefore a higher average
precision is expected. AdvDb on the other hand is perform-
ing poorly in terms of average precision, with average preci-
sion scores far away from other models.

Looking into demographic parity scores, the results show
that GanDeb falls behind the other two models in two out
of three attribute categories. While Ours is performing bet-
ter for gender dependent and gender independent attribute
categories. Looking into the third fairness measure, differ-
ence in equality of opportunity, AdvDb and ours are per-
forming better than GanDeb in all three categories of at-
tributes. Ours beats AdvDb for inconsistent attributes cat-
egory, AdvDb beats Ours in gender dependent category, and
AdvDb slightly beats Ours for gender independent cate-
gory of attributes. In summary, Ours is close to GanDeb in
terms of maintaining high average precision scores, which
means higher accuracy of prediction, while beating Gan-
Deb in terms of fairness metrics. Also, while AdvDb perfor-
mance in terms of fairness enforcement is better than ours
in 3 out of 6 cases, it falls behind significantly in terms of
average precision.

To explore the trade-off between fairness and precision,
we perform the following experiment: λ was increased be-
tween [0.01, 0.15] in steps of 0.01, and for each value of λ,
the model was trained three times, each time for 1 epoch.
Figure 4 shows how AP, DEO, and DP change. The results
show that by increasing λ, precision decreases while fairness
measures improve.

Interpretation and the effect on other attributes
In this section, we aim to display the correspondence be-
tween an attribute’s relationship with Attractive at-
tribute, and the extent to which the model modifies that
attribute. To do so, for each attribute, we record two val-
ues, namely HSIC value between that attribute and the
Attractive attribute, and the change in demographic
parity. To calculate the change in demographic parity, we
first calculate the demographic parity of the classifier for
that specific attribute, when the classifier classifies the orig-
inal testing set images (similar to Baseline in previous ta-
bles, but for each attribute separately). We then calculate
the demographic parity of the classifier for that specific at-
tribute, when the classifier receives the modified training
images Ours(5,0.07). We then subtract the two values, to
get the change in demographic parity for that specific at-
tribute. Figure 5 presents the results, with the red bars show-
ing the change in demographic parity for each attribute, and
the blue bars showing the statistical dependence measured

by HSIC, between each attribute with Attractive at-
tribute, in the original training data. The results show that the
absolute change in demographic parity is positively corre-
lated with that attribute’s statistical dependence with the at-
tribute Attractive, with a Pearson correlation coefficient
of 0.757. For instance, we observe large changes in demo-
graphic parity for attributes such as Young, Big Nose,
Pointy Nose, Oval Face, and Arched Eyebrows,
as they are typically associated with being attractive, and
therefore reflected in the CelebA dataset labels.

Conclusions
We proposed an image reconstruction process to mitigate
bias against a protected attribute. The model’s performance
was evaluated on CelebA dataset and compared with an
augmentation based method developed by (Ramaswamy,
Kim, and Russakovsky 2021). The proposed model showed
promising results in mitigating bias while maintaining high
precision for classifiers. An interesting aspect of the results
is that although we only explicitly train the U-net to remove
dependence between the target attribute (Attractive)
and the protected attribute (Male), classifiers related to
many other attributes, most of which have a statistical de-
pendency with the target attribute, become ‘fairer’. An ad-
vantage of the proposed model is that it does not rely on
modifying downstream classifiers, and rather includes only
modifying the input data, hence making it suitable to be de-
ployed in an automated machine learning pipeline more eas-
ily and with lower cost. As a potential future direction, we
intend to consider the problem in a situation where multi-
ple protected attributes are present, and attributes are non-
binary. We also intend to apply similar methodology on
other data types such as tabular data.
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AP ↑ DP ↓ DEO ↓
Incons. G-dep G-indep Incons. G-dep G-indep Incons. G-dep G-indep

Baseline 0.667 0.79 0.843 0.147 0.255 0.137 0.186 0.243 0.163
GanDeb 0.641 0.763 0.831 0.106 0.233 0.119 0.158 0.24 0.142
AdvDb 0.243 0.333 0.218 0.091 0.169 0.121 0.136 0.149 0.098

Ours 0.618 0.732 0.839 0.097 0.146 0.118 0.124 0.172 0.114

Table 1: Comparing the results of our model with Baseline, GAN debiasing (GanDeb), and Adversarial debiasing (AdvDb).
Showing AP (Average Precision, higher the better), DP (Demographic Parity, lower the better), and DEO (Difference in Equality
of Opportunity, lower the better) values for each attribute category. Each number is the average over all attributes within that
specific attribute category.

Figure 4: Exploring the trade-off between accuracy and fairness by incremental increasing of parameter λ. Each data point is
the average over three trainings, with standard deviation of the three trainings shown as confidence intervals.

Figure 5: Displaying the relationship between an attribute’s statistical dependence on Attractive attribute, and the extent
to which the model modifies that attribute. Blue bars show the HSIC between each attribute with Attractive attribute in
the original data. Red bars show the absolute difference in demographic parity of each attribute’s classifier, acting on original
images and transformed images, respectively.
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