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Abstract

Knowledge graphs (KG) have emerged as comprehensive
tools to enable knowledge discovery. Knowledge representa-
tion learning learns knowledge graph embeddings, which are
extremely useful feature inputs for a wide variety of predic-
tion and graph analysis tasks. Due to the diverse and subjec-
tive nature of KG, KG evaluation becomes an important and
open problem. Existing evaluation methods are often based
on case studies or downstream tasks like information retrieval
and question answering systems, which is either lack gener-
alizability or hard to implement. To address the challenges
above, we propose three direct metrics for the knowledge
graph, the K Score, I Score, and C Score, derived from the
science of science, information theory, and causality perspec-
tives, respectively. We propose a human-centered approach
to evaluate the effectiveness of our metrics. Through a pi-
lot study, we share insights on the complications of human-
centered evaluation and motivate future work.

Introduction
Knowledge graphs (KG) encode the real world to support
domains and applications like computer vision, natural lan-
guage processing, recommendation system, information re-
trieval, and so forth. KG can provide a holistic view of
knowledge (Kamdar 2019; Hegel 2018) to enable scientific
discovery (Chandak, Huang, and Zitnik 2022; Sun et al.
2019; Du et al. 2017; Liu et al. 2022; Ren et al. 2022; Mao,
Broerman, and Benos 2020; Rosas et al. 2022; Paudel et al.
2022; Mao and Dou 2022), and on the other hand, incor-
porates expert knowledge into machine learning framework
(Li et al. 2022; Qian et al. 2021; Mao et al. 2022a; Dou et al.
2022; Dou, Luo, and Yang 2022; Mao et al. 2022b; Tan et al.
2022a; Yang et al. 2022; Zeng et al. 2022; Mao and Dou
2022; Tang et al. 2022; Shi et al. 2022; Tang et al. 2023).

WordNet (Miller 1998) (Figure 1), VisualGenome (Kr-
ishna et al. 2017) (Figure 2), and PrimeKG (Chandak,
Huang, and Zitnik 2022) (Figure 3) are three representa-
tive knowledge graphs we consider in this paper. WordNet
is a large lexical database of English. Nouns, verbs, adjec-
tives, and adverbs are grouped into sets of cognitive syn-
onyms (synsets), each expressing a distinct concept. Word-
Net’s structure makes it a powerful tool for downstream
tasks in natural language processing (Majewska et al. 2021).

Figure 1: A WordNet example (Miller 1998).

VisualGenome is among the first to provide detailed la-
beling of object interactions and attributes, grounding vi-
sual concepts in language. It enables the modeling of rela-
tions between objects and images. Question answering task
is used to evaluate VisualGenome’s performance. PrimeKG
is a precision medicine-oriented knowledge graph that pro-
vides a holistic view of diseases. It supports artificial intelli-
gence analyses of how drugs target disease-related molecu-
lar perturbations by unique drug-disease edges. Multimodal
analyses (Tsai et al. 2019) can be enabled by PrimeKG’s
graph structure. Figure 3 shows a PrimeKG example. A case
study in autism is conducted to evaluate the relevance of
PrimeKG to the clinical presentation of autism. Computa-
tional approaches are used to group disease nodes. Although
there is considerable interest in the construction and applica-
tions of KG, the evaluation is challenging. As we mentioned
in the last paragraph, downstream tasks and case studies are
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Figure 2: A VisualGenome example inspired by (Krishna et al. 2017).
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Figure 3: A biomedical knowledge graph example from
PrimeKG (Chandak, Huang, and Zitnik 2022).

used to evaluate knowledge graphs like VisualGenome and
PrimeKG, while there are no principled metrics to measure
the “knowledge” in knowledge graphs. Thus we explore this
space and propose three metrics: the K Score, based on the
literature of Science of Science; the I Score originated from
the information theory; and the C Score from the causal
perspective.

The K Score is our initial attempt to measure knowledge
in knowledge graphs. The insightful human-centered intu-
ition mediates the current research landscape that human-
centric metrics have been largely under-served in terms of

research and development of machine learning, and specifi-
cally representation learning. Then based on the limitations
of the K Score, we propose a more mathematically rigor-
ous I Score to address issues the K Score may encounter.
Last but not least, the C Score measures the causal informa-
tion of a knowledge graph by a corresponding causal graph.
This is specifically impactful in biology and medicine since
the causal mechanism of biological processes is the holy
grail of biomedical inquiry.

In the rest of the paper, we introduce the proposed met-
rics in detail in Section 2. A human-centered pilot study to
evaluate the three metrics is summarized in Section 3. The
conclusion and future work are provided in Section 4.

Proposed Metrics
Science of Science Approach: the K-Score
The science of science as an academic discipline offers a
quantitative understanding of the interactions among scien-
tific agents across diverse geographic and temporal scales
(Fortunato et al. 2018; Dou 2017; Dou et al. 2017; Dou, Sun,
and Zou 2016; Tan et al. 2022b; Mo et al. 2022). On a rel-
evant note, Weis and Jacobson (2021) use knowledge graph
dynamics to provide an early-warning signal for impactful
research by learning high-dimensional relationships among
features calculated across time from the scientific literature.

Wu, Wang, and Evans (2019) proposes a disruption mea-
surement D to assess the difference between the observed
number of papers divided by the number of all subsequent
works. Subsequently, Xu, Wu, and Evans (2022) explores
the relation between team structure and the character of
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knowledge they produce. It uses a lead (or L)-ratio to char-
acterize the fraction of Lead authors in a team.

Inspired by the two metrics above, we propose the
K Score measure the “knowledge” a knowledge graph con-
veys. The initial idea of the personalized measurement of
knowledge in KG is as the following:

[The Knowledge Score] Suppose we have a total of n
nodes with nu unknown nodes, and e edges with eu un-
known edges. The context parameter of the node and the
edge is defined as c. Then the Knowledge Score, K Score is
formulated as:

K Score = c ∗ (nu

n
+

eu
e
). (1)

Here we explain why we call the K Score a personal-
ized knowledge score. When we look at the same knowl-
edge graph with 40 nodes and 80 edges, different people
have different existing knowledge and different context ar-
gument. For example, we assume, for a PhD student in ma-
chine learning, there are 30 unknown nodes, 60 unknown
edges, and the context parameter as 2. Then we have the
K Score as the following:

K Score = 2 ∗ (30
40

+
60

80
) = 3.00. (2)

While for a biomedical expert, the unknown nodes 5 and
edges 10 can be much less, while the existing knowledge
base will enable a much bigger context parameter 10. Then
we have the K Score as the following:

K Score = 10 ∗ ( 5

40
+

10

80
) = 2.50. (3)

Although carrying intuitive insights, the above formulation
is very preliminary. One major drawback is that we did not
consider the size of the nodes and edges of the KG, which
could be an important factor of “knowledge”. Another chal-
lenge is to take into account the dynamic interactions be-
tween edges and nodes. Also, we develop the K Score
mainly having the knowledge graphs like PrimeKG in mind.
How to interpret multi-modality knowledge graphs like Vi-
sualGenome within the K Score is also among the follow-
ing challenges we want to tackle.

Information Theory Approach: the I-Score
Although the K Score is intuitive and interpretable, as men-
tioned above, it is far from complete. We start this subsection
by giving an example where the K Score fails. Recall the
Knowledge Score K Score above and consider the follow-
ing case, where we have two biomedical knowledge graphs
with edges and nodes: KG1 and KG2.
• For the KG1 with 20 nodes and 60 edges, we have 15

unknown nodes and 45 unknown edges.
• For the KG2 with 40 nodes and 80 edges, we have 30

unknown nodes and 60 unknown edges.
Although we gain more knowledge from KG2 than KG1,
we notice that the K score is the same for the two cases.
This demonstrates that K score can evaluate the intra-
knowledge of the knowledge graphs but is limited in gen-
erating comparable measurements across the graphs.

The information theory (Shannon 1948) is the mathemat-
ical treatment of the concepts, parameters and rules gov-
erning the transmission of messages through communica-
tion systems. it studies the quantification and communica-
tion of digital information and thus it can be used to measure
the knowledge of knowledge graphs. To evaluate the inter-
knowledge of different graphs, inspired by the information
theory, we propose a method to assess the uncertainty of the
graph to measure the knowledge.

Specifically, let X be a random variable of the nodes tak-
ing on a finite number M of different values x1, · · · , xM

with probability p1, · · · , pM , pi > 0, such that

M∑
i=1

pi = 1. (4)

and Y be a random variable of the edges taking on a finite
number N of different values y1, · · · , yN with probability
q1, · · · , qN , qi > 0 such that

N∑
i=1

qi = 1. (5)

The knowledge we gain from the KG is desired to be a func-
tion of p1, · · · , pM and q1, · · · , qN .

[The Informative Score] Suppose we have total n nodes
with the set Sn of unknown nodes with probability

pi > 0, i ∈ Sn. (6)

and total e edges with the set Se of unknown edges with
probability

qi > 0, i ∈ Se. (7)
the importance of the node and the edge is defined as cn and
ce, then the Informative Score, the I Score can be formu-
lated as:

I Score = cn ∗
∑
i∈Sn

pi log
1

pi
+ ce ∗

∑
i∈Se

qi log
1

qi
. (8)

With such a definition, our score has the following proper-
ties:

[Additivity] The I Score can be divided into two parts as

I Score = H(p1, · · · , pM ) +H(q1, · · · , qN ), (9)

where each H(·) is an entropy-like function. Hence, the
I Score can be further represented as

I Score =

M∑
i=1

H(pi) +

N∑
i=1

H(qi). (10)

[Monotonicity] The I Score takes the size of the KG into
account and thus can measure the inter-knowledge of the
graphs. Specifically, let

f(M) = H(
1

M
, · · · , 1

M
). (11)

If M < M ′, then

f(M) < f (M ′) . (12)
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Consider the case that the K Score cannot tell the differ-
ence above, we choose

cn = ce = 0.5. (13)

and assume the probability to be equal here for simplicity.
Then back to the KG1 and KG2 in the case we mentioned
at the beginning of the subsection, we have the I Scores as
as the following:

I ScoreKG1
= 0.5 ∗ 15

20
log 20 + 0.5 ∗ 45

60
log 60 = 1.16,

(14)

I scoreKG2
= 0.5 ∗ 30

40
log 40 + 0.5 ∗ 60

80
log 80 = 1.31.

(15)
With the monotonicity, the I Score can effectively mea-
sures the knowledge across the graphs with different sizes.
From this angle, the I Score has better properties and mea-
sures knowledge in knowledge graphs more precisely over
the K Score.

Measuring Causal Informative Score: the C-Score
Finding underlying causal relations is a fundamental task
in many disciplines, including economics, biology, and
medicine. Knowledge graphs organically comprise causal
information (Nordon et al. 2019). Recent work (Domingo-
Fernández et al. 2022) has shown that causal reasoning over
knowledge graphs can accelerate the drug discovery pro-
cess. However, most evaluation metrics do not take how
much causal information a knowledge graph may contain
into account. In this section we take a causal perspective
(Pearl 2009) to the knowledge measurement problem. We
first bridge the knowledge graphs and causal graphs (Pearl
2009; Spirtes et al. 2000) with overlapping edges. Then
we introduce the concepts of the causal informative score
(C Score) and P− causal informative score (P−C Score)
to evaluate the causal information in the learned knowledge
graph.

In the beginning, we present notations and definitions of
our approach. We assume the causal relationships can be
encoded as a graph G = {VC , EC}. Each vertex n ∈ VC

in G represents a random variable. Furthermore, the causal
graphs could be derived from observational data with PC al-
gorithm (Spirtes et al. 2000) or expert knowledge. We do
not limit the causal graphs as a Directed Acyclic Graph
(DAG) in this paper. Meanwhile, we have a directed or par-
tial directed knowledge graph KG = {VKG, EKG}. Then
we define causal sufficient KG, causal efficient KG, and
causal equivalent KG. It’s worth noting that in the knowl-
edge graph there are different edges, but we only examine
the direct edges which could be positive or negative correla-
tions. In order to illustrate the concepts we propose, we first
have the following definitions.

[Causal Sufficient Knowledge Graph] If a knowledge
graph KG,

∀e ∈ EKG =⇒ ∃e′ ∈ EC . (16)

then we say KG is causal sufficient.

[Causal Efficient Knowledge Graph] If a knowledge
graph KG,

∀e ∈ EC =⇒ ∃e′ ∈ EKG. (17)

then we say KG is causal efficient.
[Causal Equivalent Knowledge Graph] If a knowledge

graph KG is simultaneously causal sufficient and efficient
regarding a casual graph G, we say KG is causal equivalent
to G. Next, we define similar concepts on sub graphs.

[Causal Sufficient Knowledge Sub-Graph] if a sub knowl-
edge graph

KGs ⊂ KG. (18)

are causal sufficient to a sub graph G, we say KGs is causal
sub-sufficient to G.

[Causal Efficient Knowledge Sub-Graph] if a sub knowl-
edge graph

KGs ⊂ KG. (19)

are causal efficient to a sub graph G, we say KGs is
causal sub-efficient to G. Knowledge graphs provide a
large number of covariates that are not contained in causal
graphs(Nordon et al. 2019). Thus, an edge in a causal graph
could correspond to a path in the knowledge graph (Nor-
don et al. 2019). For example, when we apply PC algorithm
(Spirtes et al. 2000) to observational data to obtain a causal
graph where exists an edge A → C. Meanwhile, there might
be A → B → C in the knowledge graph. So the path
A → B → C refers to the edge A → C. In order to tackle
this case, we further define P-Causal Knowledge Graph.

[P−Causal Sufficient Knowledge Graph] If a knowledge
graph KG

∀ path p with at most P distinct vertices =⇒ ∃e′ ∈ EC .
(20)

then we say KG is P causal sufficient.
[P−Causal Efficient Knowledge Graph] If a knowledge

graph KG,

∀e ∈ EC =⇒ ∃ path p with at most P

distinct vertices ∈ EKG.(21)
then we say KG is P causal efficient.

[P−Causal Equivalent Knowledge Graph] If a knowledge
graph KG are both P−causal sufficient and efficient regard-
ing a casual graph G, we say KG is P causal equivalent to
G.

With previous definitions, we introduce the definition of
causal sufficient score, causal efficient score, causal infor-
mative score.

[Causal Informative Score] Given a knowledge graph
KG, ground truth causal graph G, and a set of causal equiv-
alent sub-graph {KGi = {Vi, Ei}}, the causal informative
score is defined as

C Score =
max |Ei|
|EKG|

. (22)

From the definition, it is easy to see the causal informative
score illustrates how much causal information a KG con-
tains. Moreover, we can derive the P−causal informative
score based on the definitions of P−causal equivalent KG.
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Figure 4: Knowledge Graph examples and corresponding causal graphs.

Knowledge Graph P1 P2 P3 P1 K Score P2 K Score P3 K Score P1 I Score P2 I Score P3 I Score
WordNet (Fig. 1) 0.95 0.75 0.90 0.70 0.47 0.53 0.42 0.69 0.84
VisualGenome (Fig. 2) 0.97 0.78 0.60 0.67 0.50 0.81 0.16 0.35 0.08
PrimeKG (Fig. 3) 0.99 0.88 0.95 0.90 0.94 0.41 0.94 0.89 0.69

Table 1: Human Subjective Evaluation vs K Score and I Score Evaluation.

[P−Causal Informative Score] Given a knowledge graph
KG, ground truth causal graph G, and a set of P− causal
equivalent sub-graph

{KGP
i = {V P

i , EP
i }}. (23)

the P−causal informative score is defined as

C ScoreP =
max |EP

i |
|EKG|

. (24)

We can see that the P−causal informative score reveals
how much causal information the learned KG contains
based on P−causal equivalent knowledge graphs. The main
difference between P−Causal Informative Score and Causal
Informative Score is that we consider a large number of co-
variates (confounders and mediators) in KG which do not
appear in a causal graph G. As the previous example shows,
there might be A → B → C in the knowledge graph but
only A → C appears in the causal graph.

Examples Fig. 4 shows an example of a knowledge graph
and corresponding causal graph of obesity, heart disease,
menopause, and breast cancer. Thus, we can calculate the
following C Score and P−C Score based on above defini-
tions and illustrations:
1. C Score = 4

7 ,

2. 2−C Score = 4
7 .

We can see that, in this case, the causal informative score
and 2−Causal Informative Score are equivalent. One limita-
tion of the above framework is that a ground truth causal
knowledge graph is required to be compared. Indeed in
current causal discovery literature, simulated studies based
on ground truth causal graphs are often needed to validate
causal discovery algorithms’ performance.

Evaluation
Comparison with Existing Approaches
The major advantages of the three metrics we propose are as
the following:

First, compared with the downstream tasks approach like
evaluating by question answering (QA) and information re-
trieval (IR) (Nair et al. 2018), one direct benefit of apply-
ing our metrics is we don’t need to implement a QA or IR
systems to evaluate the knowledge graphs/knowledge bases,
which may require additional engineering efforts and techni-
cal expertise. Our metrics, for example, the K Score, origi-
nated from human-centered evaluation, are much more con-
venient to use and direct. Furthermore, given we offer a
set of three metrics that have different characteristics and
strengths, users can choose whatever they think is the most
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suitable for specific purposes.
On the other hand, compared to the case study approach

(Chandak, Huang, and Zitnik 2022), our methods are more
general and have broader applicability. One example of case
study evaluation is (Wang et al. 2020), which uses a drug
repurposing report generation task to evaluate the COVID-
19 literature knowledge graph they developed. Although it’s
very practical and useful, it’s relatively specific and is not as
versatile as the metrics we propose.

Last but not least, our personalized measurement ap-
proach is a great and concrete example concurring with the
human-centered AI initiative advocated by (Shneiderman
2022) and the causality score can be linked with the data
generation process (Pearl et al. 2000). We will illustrate the
two points further in follow-up research with more details.

Quantitative Evaluation
Anderson et al. (2016) proposed an automated evaluation
metric SPICE for image caption. It computes a score that
captures the similarity between a candidate caption and a
set of reference captions associated with an image. It com-
pares SPICE to existing metrics by correlation with human
judgments, It inspires us to design a study to study the cor-
relation between the three metrics we propose and human
judgments.

We start by conducting a human-centered study by invit-
ing three interviewees (P1, P2, and P3) to look at the three
typical knowledge graphs (Figure 1, 2, and 3) and give a sub-
jective evaluation of the knowledge gain. Then we calculate
the personalized K Score and I Score for the three-person
respectively. The results are summarized in Table 1. In the
above pilot evaluation study, we identify multiple interesting
phenomena:

First, human subjective evaluation can be quite arbitrary,
the current three samples cannot provide stable ground truth.
Second, Indeed different persons intrinsically equip with
different context knowledge (a.k.a different c) when facing
different knowledge graphs, but how to estimate the param-
eter c is a question. Third, what is unknown is not always
clear to humans and it can be elevated to a philosophical
level.

In the following steps, we plan to use Pearson’s ρ (Ben-
esty et al. 2009) to measure linear association and Kendall’s
τ rank correlation coefficient (Abdi 2007) to evaluate the or-
dinal association between two measured quantities.

Challenges of Computing the C Score and
P−C Score
There are two main challenges in computing the C Score
and P−C Score. First there may be multiple nodes in KG
referring to one random variable in the causal graph. For
example Malignant ovarian surface Epithelial-Stromal Tu-
mor and Epithelial ovarian cancer refer to the same concept
(node) in the causal graph. How to map a knowledge graph’s
vertices to causal graphs remains an open problem. Second,
there are various kinds of edges that represent different rela-
tions in KG. It’s still under exploration what edges should
be classified as “causal” edges. Solving these two main chal-
lenges is one of the future works of the paper.

Conclusion and Future Work
Knowledge graphs represent networks of real-world entities:
objects, events, situations, or concepts, and illustrate the re-
lationship between them. In this paper, we present three new
principled metrics K Score based on the science of science,
I Score based on information theory, and C Score based
on causality to evaluate the knowledge in knowledge graphs.
In the next step, we plan to carefully design a survey study
to collect human judgment of knowledge gained from a col-
lection of knowledge graph examples, then conduct the cor-
relation study mentioned above. This work provides novel
and unique perspectives for pressing knowledge graph eval-
uation problems.
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