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AI/ML in Medicine



AI/ML in Medicine: There is a lot of hype



AI/ML in Medical Imaging

• Out of 64 AI/ML based, FDA approved medical devices and 
algorithms, 30 (46.9%) for focus on radiology
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AI in Medical Imaging: Opportunities

Screening and Monitoring

Semantic Image Interpretation

Quantification of Imaging Biomarkers

Image Enhancement

Image Acquisition and Reconstruction

Diagnosis and Prediction

Accelerated imaging

Denoising, Super-
resolution, Image fusion

Detection, Localisation, 
Segmentation

Computer-aided decision 
support systems

Analysis of shape and texture,
Radiomics



Learning to reconstruct cardiac MRI

K-space Signal space

Full sampling
(slow)

25% sampling
(4-fold 

acceleration)

learning-based
reconstruction

e.g. compressed
sensing



Deep learning for image reconstruction

Convolution + RELU
Max pooling

Transposed convolution
Softmax Skip layers



Deep learning for image reconstruction

Schlemper et al. IEEE TMI 2017
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Deep learning for image reconstruction



Deep learning for image reconstruction

Schlemper et al. IEEE TMI 2017



Magnitude reconstruction (6-fold)

(a) 6x Undersampled (b) Deep learning reconstruction (c) Ground Truth

Schlemper et al. IEEE TMI 2017



Magnitude reconstruction (11-fold)

Schlemper et al. IEEE TMI 2017

(a) 11x Undersampled (b) Deep learning reconstruction (c) Ground Truth



AI-enabled image super-resolution

• Acquisition of cardiac MRI typically 
consists of 2D multi-slice data due to
– constraints on SNR
– breath-hold time
– total acquisition time

• This leads to thick slice data (thickness 
8-10 mm per slice)

Slice I

Slice II

Slice III
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AI-enabled image super-resolution

Convolution + RELU
Max pooling

Transposed convolution
Softmax Skip layers

+



AI-enabled image super-resolution

O. Oktay et al. IEEE TMI 2018



Application to fetal MR imaging

fast single-shot techniques 
are 2D acquisitions that 
freeze the motion in time 

but ...

Fetal example:

1. Long acquisition times
2. Fetal motion and

maternal breathing



Application to fetal MR imaging



Application to fetal MR imaging



Application to fetal MR imaging

Reconstruction using registration
and super-resolution imaging

Murgasova et al., MEDIA, 2012
Kainz et al., IEEE TMI 2015
Alansary et al., IEEE TMI 2017



AI-enabled image recognition

• Potential applications:
– Guidance: Assist inexperienced sonographers
– Convenience: Automatically make a check list of 

visited planes
– Reproducibility: Reduce variability between 

operators

Fetal brain standard planes
a: Transventricular plane
b: Transthalamic plane

c: Transcerebellar plane

Image from Ultrasound 
Obstet Gynecol, 29: 109-116



AI-enabled image recognition:
Automatic Scan Plane Detection

Abdominal View
Confidence: 98%

Lips View
Confidence: 96%

Goal: Do this in real-time on images straight from US machine





Automatic Standard Scan 
Plane Detection: Attention models

Schlemper et al. MedIA 2019



Automatic Standard Scan 
Plane Detection: Attention models

Schlemper et al. MedIA 2019



Automatic Standard Scan 
Plane Detection in 3D

Y. Li et al. MICCAI 2018Using reinforcement learning and artificial agents



AI-enabled image segmentation

Bai et al., JCMR 2018



AI-enabled image segmentation

SA, basal SA, mid-ventricular SA, apical

LA, 2 chamber LA, 4 chamber Bai et al., JCMR 2018



Large-scale population analysis

• In 2014, UK Biobank began the process of inviting back 
100,000 of the original volunteers for brain, heart and body 
imaging. 

• Imaging is done across several dedicated centres in the UK



UK Biobank: Imaging

+

Lifestyle

Genetics

Clinical 
records



Large-scale population analysis

of physical measurements and a growing range of genetic and biomarker data. Currently, UK Biobank is in the process of
acquiring comprehensive multi-modal images of different organ systems from 100,000 participants using a highly standardised
protocol, including magnetic resonance (MR) scans of the heart, brain and abdomen, ultrasound scans of carotid arteries, whole
body dual-energy X-ray absorptiometry (DXA) scan of bones and joints, retinal photographs and optical coherence tomography
(OCT) images19. These will add additional imaging phenotypes for understanding the determinants of diseases.

Deriving quantitative imaging phenotypes at this scale forms a major challenge. Recently, an image analysis pipeline has
been developed for UK Biobank brain MR images, which generates ⇠4,350 imaging phenotypes of brain structure and function
for 10,000 subjects21. The derived brain imaging phenotypes, along with the breadth of life-style and health information
collected by UK Biobank, provide a valuable resource for studying the influence of ageing, progression of neuropathology and
identifying early-stage image-based biomarkers for diseases22. An initial genome-wide association study (GWAS) has been
performed23, which identified 148 clusters of associations between single nucleotide polymorphisms (SNPs) and brain imaging
phenotypes that replicate at p < 0.05, providing insights into the genetic architecture relevant to the brain.

Here we present cardiac and aortic structural and functional imaging phenotypes for 26,893 subjects and demonstrate
association studies enabled by these imaging phenotypes at a population level. The phenotypes were derived from UK Biobank
CMR images using an automated machine learning-based analysis pipeline, built upon previously proposed cardiac and
aortic image segmentation methods using convolutional neural networks24, 25. The pipeline evaluates comprehensive imaging
phenotypes for the heart and aorta, including global phenotypes of the four cardiac chambers and two aortic sections: the left
ventricle (LV), right ventricle (RV), left atrium (LA), right atrium (RA), ascending aorta (AAo) and descending aorta (DAo), as
well as regional phenotypes of the LV myocardial wall thickness and strain. We report associations of the cardiac and aortic
imaging phenotypes with sex, age and traditional cardiovascular risk factors. We then conducted a first large, population-based
phenome-wide association study to relate the cardiac and aortic phenotypes to non-imaging phenotypes. We discovered a wide
range of highly significant associations with life style, early-life factors, mental health and cognitive function of the participants.

Figure 1. Automated CMR image analysis pipeline. a) LV and RV volumes are derived from short-axis image
segmentation. b, c) LA and RA volumes are derived from on long-axis image segmentation (b: 4 chamber view; c: 2 chamber
view). d) AAo and DAo cross-sectional areas are derived from aortic image segmentation. e) Myocardial wall thickness is
measured using the distance between LV endocardial contour (red) and epicardial contour (green). f) Three short-axis image
slices are selected, including a basal slice at 75% LV location, a mid-cavity slice at 50% LV location and an apical slice at 25%
LV location. The endocardial and epicardial contours are divided into 16 AHA segments (coded by different colours). g)
Motion tracking is performed on short-axis image slices, warping the contours to each time frame across a cardiac cycle.
Circumferential and radial strains (colour-coded on the contours) are calculated using the change of length of the line segments.
h) On the long-axis 4 chamber view image, the endocardial and epicardial contours are divided into 6 segments (coded by
different colours). i) Motion tracking is performed on the long-axis 4 chamber view image. Longitudinal strain is calculated
using the change of length of the line segments.
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W. Bai et al., Nature Medicine, 2020



Cardiac IDPs from 26,893 subjects
Associations with sex and age 

W. Bai et al., Nature Medicine, 2020



Phenome-wide association study

Figure 5. Phenome-wide association study. n = 26,893 subjects were used. (a) Manhattan plot showing the p-values
(two-sided t-test) for correlations between imaging phenotypes and non-imaging phenotypes. The height of each data point
denotes the negative logarithm of the univariate correlation p-value between one imaging phenotype and one non-imaging
phenotype. The area of the data point denotes the absolute value of the Pearson’s correlation coefficient. The colour of the data
point denotes the anatomical structure of the imaging phenotype. The Bonferroni threshold for multiple comparisons
(a = 0.05) is shown as a dashed horizontal line. (b) Plot showing the Pearson’s correlation coefficients between imaging
phenotypes and non-imaging phenotypes. The height of each data point denotes the correlation coefficient and the area denotes
the negative logarithm of the p-value (two-sided t-test).

controversial27. With the greater statistical power afforded by this large population study, we have found similar and much
stronger associations in a UK population (Supplementary Table 16). Higher fluid intelligence score was strongly associated with
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Cardiac and aortic structure and function are associated with 
cardiovascular diseases (CVDs)1,2 and a wide range of other 
types of disease3–6. Quantitative phenotypes derived from 

cardiovascular magnetic resonance (CMR) images enable us to 
assess cardiac and aortic structure and function in a non-invasive 
way, and provide important biomarkers for the determination of 
pathological states in CVDs. For example, the left ventricular ejec-
tion fraction (LVEF) is an important clinical biomarker for the 
diagnosis and treatment of heart failure1. The left ventricular myo-
cardial mass (LVM) is widely used for classifying hypertrophy and 
predicting risks of cardiovascular events7. Although CMR imag-
ing phenotypes clearly play an important role in disease research 
and diagnosis, extraction of these phenotypes demands substantial 
involvement of experienced image analysts. This has become a lim-
iting factor for applying CMR in large-scale studies and exploiting 
imaging phenotypes at a population level.

Large-scale imaging studies potentially provide a wealth of 
information for investigating disease risk factors and discovering 
early-stage image-based biomarkers. Recent large-scale imaging 
studies collecting CMR images include the Framingham Heart Study 
(offspring cohort comprised 1,114 participants)8, MESA (5,004 par-
ticipants)9, DETERMINE (655 participants)10, Dallas Heart Project 
(2,921 participants)11 and UK Digital Heart Project (~2,000 partici-
pants)12, to name a few. They have illustrated the potential infor-
mativeness of CMR in large-scale studies, but lacked the power to 
explore a wide range of individual phenotypes simultaneously.

UK Biobank is a population-based prospective study for investi-
gating the risk factors for common adult diseases in middle and old 
age13–16. It recruited 500,000 women and men, initially aged 40–69 
years old, between 2006 and 2010 for long-term follow-up, from 
whom extensive sociodemographic, lifestyle and health-related 
information was serially collected, along with a range of physical 
measurements and a growing range of genetic and biomarker data. 
Currently, UK Biobank is in the process of acquiring comprehensive 
multi-modal images of different organ systems from 100,000 par-
ticipants using a highly standardized protocol, including magnetic 
resonance (MR) scans of the heart, brain and abdomen, ultrasound 
scans of carotid arteries, whole-body dual-energy X-ray absorpti-
ometry (DXA) scans of bones and joints, retinal photographs and 
optical coherence tomography (OCT) images14. These will add 
additional imaging phenotypes for understanding the determinants 
of diseases.

Deriving quantitative imaging phenotypes at this scale presents 
a major challenge. Recently, an image analysis pipeline has been 
developed for UK Biobank brain MR images, which has generated 
approximately 4,350 imaging phenotypes of brain structure and 
function for 10,000 participants17. The derived brain imaging phe-
notypes, along with the breadth of lifestyle and health information 
collected by UK Biobank, provide a valuable resource for study-
ing the influence of aging and the progression of neuropathology, 
and for identifying early-stage image-based biomarkers for dis-
eases18. An initial genome-wide association study (GWAS) has been  

A population-based phenome-wide association 
study of cardiac and aortic structure and function
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Differences in cardiac and aortic structure and function are associated with cardiovascular diseases and a wide range of other 
types of disease. Here we analyzed cardiovascular magnetic resonance images from a population-based study, the UK Biobank, 
using an automated machine-learning-based analysis pipeline. We report a comprehensive range of structural and functional 
phenotypes for the heart and aorta across 26,893 participants, and explore how these phenotypes vary according to sex, age 
and major cardiovascular risk factors. We extended this analysis with a phenome-wide association study, in which we tested 
for correlations of a wide range of non-imaging phenotypes of the participants with imaging phenotypes. We further explored 
the associations of imaging phenotypes with early-life factors, mental health and cognitive function using both observational 
analysis and Mendelian randomization. Our study illustrates how population-based cardiac and aortic imaging phenotypes can 
be used to better define cardiovascular disease risks as well as heart–brain health interactions, highlighting new opportunities 
for studying disease mechanisms and developing image-based biomarkers.
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AI for decision support: 
Survival prediction
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AI for decision support: 
Survival prediction



AI has the potential to revolutionize medicine and 
healthcare

But what are the challenges?



Lack of sufficient data: Bias and fairness
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Dissecting racial bias in an algorithm used to manage
the health of populations
Ziad Obermeyer1,2*, Brian Powers3, Christine Vogeli4, Sendhil Mullainathan5*†

Health systems rely on commercial prediction algorithms to identify and help patients with complex
health needs. We show that a widely used algorithm, typical of this industry-wide approach and
affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients
are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses.
Remedying this disparity would increase the percentage of Black patients receiving additional
help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than
illness, but unequal access to care means that we spend less money caring for Black patients than
for White patients. Thus, despite health care cost appearing to be an effective proxy for health
by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of
convenient, seemingly effective proxies for ground truth can be an important source of algorithmic
bias in many contexts.

T
here is growing concern that algorithms
may reproduce racial and gender dis-
parities via the people building them or
through the data used to train them (1–3).
Empirical work is increasingly lending

support to these concerns. For example, job
search ads for highly paid positions are less
likely to be presented to women (4), searches
for distinctively Black-sounding names are
more likely to trigger ads for arrest records
(5), and image searches for professions such
as CEO produce fewer images of women (6).
Facial recognition systems increasingly used
in law enforcement perform worse on recog-
nizing faces of women and Black individuals
(7, 8), and natural language processing algo-
rithms encode language in gendered ways (9).
Empirical investigations of algorithmic bias,

though, have been hindered by a key constraint:
Algorithms deployed on large scales are typically
proprietary, making it difficult for indepen-
dent researchers to dissect them. Instead, re-
searchers must work “from the outside,” often
with great ingenuity, and resort to clever work-
arounds such as audit studies. Such efforts can
document disparities, but understanding how
and why they arise—much less figuring out
what to do about them—is difficult without
greater access to the algorithms themselves.
Our understanding of a mechanism therefore
typically relies on theory or exercises with

researcher-created algorithms (10–13). With-
out an algorithm’s training data, objective func-
tion, and predictionmethodology, we can only
guess as to the actual mechanisms for the
important algorithmic disparities that arise.
In this study, we exploit a rich dataset that

provides insight into a live, scaled algorithm
deployed nationwide today. It is one of the
largest and most typical examples of a class
of commercial risk-prediction tools that, by
industry estimates, are applied to roughly
200 million people in the United States each
year. Large health systems and payers rely on
this algorithm to target patients for “high-risk
care management” programs. These programs
seek to improve the care of patients with
complex health needs by providing additional
resources, including greater attention from
trained providers, to help ensure that care is
well coordinated. Most health systems use
these programs as the cornerstone of pop-
ulation health management efforts, and they
are widely considered effective at improving
outcomes and satisfaction while reducing costs
(14–17). Because the programs are themselves
expensive—with costs going toward teams of
dedicated nurses, extra primary care appoint-
ment slots, and other scarce resources—health
systems rely extensively on algorithms to iden-
tify patients who will benefit the most (18, 19).
Identifying patients who will derive the

greatest benefit from these programs is a
challenging causal inference problem that
requires estimation of individual treatment ef-
fects. To solve this problem, health systems
make a key assumption: Those with the great-
est care needs will benefit the most from the
program. Under this assumption, the targeting
problem becomes a pure prediction policy prob-
lem (20). Developers then build algorithms

that rely on past data to build a predictor of
future health care needs.
Our dataset describes one such typical algo-

rithm. It contains both the algorithm’s predic-
tions as well as the data needed to understand
its inner workings: that is, the underlying in-
gredients used to form the algorithm (data,
objective function, etc.) and links to a rich
set of outcome data. Because we have the
inputs, outputs, and eventual outcomes, our
data allow us a rare opportunity to quantify
racial disparities in algorithms and isolate the
mechanisms by which they arise. It should be
emphasized that this algorithm is not unique.
Rather, it is emblematic of a generalized ap-
proach to risk prediction in the health sec-
tor, widely adopted by a range of for- and
non-profit medical centers and governmental
agencies (21).
Our analysis has implications beyond what

we learn about this particular algorithm. First,
the specific problem solved by this algorithm
has analogies in many other sectors: The pre-
dicted risk of some future outcome (in our
case, health care needs) is widely used to tar-
get policy interventions under the assumption
that the treatment effect is monotonic in that
risk, and the methods used to build the algo-
rithm are standard. Mechanisms of bias un-
covered in this study likely operate elsewhere.
Second, even beyond our particular finding,
we hope that this exercise illustrates the im-
portance, and the large opportunity, of study-
ing algorithmic bias in health care, not just
as a model system but also in its own right. By
any standard—e.g., number of lives affected,
life-and-death consequences of the decision—
health is one of the most important and wide-
spread social sectors in which algorithms are
already used at scale today, unbeknownst
to many.

Data and analytic strategy

Working with a large academic hospital, we
identified all primary care patients enrolled
in risk-based contracts from2013 to 2015. Our
primary interest was in studying differences
betweenWhite and Black patients.We formed
race categories by using hospital records,which
are based onpatient self-reporting. Any patient
who identified as Black was considered to be
Black for the purpose of this analysis. Of the
remaining patients, those who self-identified
as races other thanWhite (e.g., Hispanic) were
so considered (data on these patients are pre-
sented in table S1 and fig. S1 in the supplemen-
tary materials). We considered all remaining
patients to beWhite. This approach allowed
us to study one particular racial difference of
social and historical interest between patients
who self-identified as Black and patients who
self-identified as White without another race
or ethnicity; it has the disadvantage of not
allowing for the study of intersectional racial
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Lack of sufficient data: Variability

• How to deal with variability?
– Population variability (normal vs pathologies)
– Image acquisition variability (e.g. due to scanner differences)

Data during training Data during deployment



Lack of sufficient data: Variability

• How to deal with variability?
– Population variability (normal vs pathologies)
– Image acquisition variability (e.g. due to scanner differences)

Stress       Rest         Cine        LGE

CT                        MR

Different hardware



Lack of sufficient data: Domain shift

Domain: 
Task: 
Given: 

Learn:

Source (S)

Domain: 
Task:
Here: 
Domain Shift:

Target (T)

Source (S)Target (T)

Domain Shift !



Lack of sufficient data: How to address?

Learning domain invariant features Data augmentation

Scanner A

Scanner B

Segmentation loss

K. Kamnitsas et al. IPMI 2017

Discriminator loss

C. Chen et al. MICCAI 2020, 2021, 2022

Spatially-variable
blending

~

~

Network weights re-sampled in 
each iteration

Image with 
new appearance

Augmented image

Training 
image

Gaussian 
distribution KL

divergence

Prediction

C. Ouyang et al., IEEE TMI in press

4 C. Chen et al.

Fig. 1: A) the original use of MixStyle as feature augmentation-based regulariza-
tion method with a standard encoder-decoder structure. B) MixStyle applied to
regularize a dual-branch network with an auxiliary image decoder D�i attached
for image reconstruction. C) We propose to apply MixStyle in the auxiliary de-
coder D�i to generate stylized images for feature-to-input space data augmen-
tation instead (MixStyle-DA), which leads to improved model robustness across
di↵erent OOD test data, compared to A, B (sebottom). GT: ground-truth.

3.2 Robust feature learning and improved interpretability with
auxiliary image decoder

In this work, for improved OOD robustness and better interpretability of style
augmentation, we propose to adapt the standard encoder-decoder to a dual-
branch network with an auxiliary image decoder D�i attached, see Fig. 1B,C.
The network is supervised with an additional image reconstruction loss Lrec(x̂,x),
allowing itself to exploit both complementary image content features and task-
specific shape features for the segmentation task [8]. We further propose to insert
the style augmentation layers in the image decoder D�i (Fig. 1C) rather than
in the encoder E✓ (Fig. 1B), allowing to generate diverse stylized images with
the same high-level semantic features z for direct data augmentation. Such a
design also improves the interpretability of feature style augmentation. More
importantly, our experimental results show that C > B > A in terms of OOD
robustness, see Fig. 1 (bottom) and Fig. S1 (supplementary). The segmentation
network trained w/ approach C is more robust against corruptions and unseen
domain shifts across di↵erent sites and di↵erent image sequences. We name this
new method as ‘MixStyle-DA’ to di↵erentiate it from the original one. We be-
lieve this data augmentation-based approach is preferred for model robustness
as it tackles model over-fitting from the root, limited training data.

3.3 MaxStyle

On top of the dual-branch architecture with the data augmentation strategy
presented above (Fig. 1C), we propose MaxStyle, a novel method that consists



Privacy-preserving AI/ML

Access to large datasets during training is critical …

… but how do we ensure privacy?
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But federated learning is not enough!

Privacy-Centred attacks:

• Attempt to disclose information 
participants did not consent to 
disclosing

• Examples include:
• Membership
• Sensitive attributes
• Training records
• Reconstruction 
• etc.

Utility-Centred attacks:

• Attempt to subvert the protocol 
and alter the utility of the model

• Examples include:
– Crafting malicious data or updates
– Hidden collateral tasks 
– etc.



But federated learning is not enough!

ARTICLES NATURE MACHINE INTELLIGENCE

over the entire confederation using the Tree-Structured Parzen 
Estimator algorithm38. Experimental data showcasing the utiliza-
tion of our hyperparameter selection framework to search for the 
optimal FL model can be found in Supplementary Section 1 and 
Supplementary Fig. 1. All above-mentioned training optimiza-
tions are implemented locally on the nodes and do not negatively 
impact privacy guarantees. Hyperparameter tuning, however, 
must be considered when DP is utilized, as it relies on multiple 
training repetitions.

Discussion on privacy-enhancing techniques. The inclusion of 
methods offering provable privacy and security guarantees in the 
FL process is a crucial step towards the widespread implementation 
of privacy-preserving AI technologies8. The successful reconstruc-
tion of images from unprotected models in our attack experiments 
underline the risks of such attacks to patient privacy, which has also 
been discussed in previous work6,39. DP training provides objective 
privacy guarantees in case of attacks against the model both by con-
federation members and during inference and is not limited to the 
gradient-based inversion attack we use in our example. SecAgg uti-
lizing SMPC only discloses the aggregate model update to the par-
ties, even in case up to n − 1 out of n parties collude to reveal data. 
The DP secure aggregation of dataset statistics (means and standard 
deviations) we propose can protect FL participants from data leak-
age, especially when non-imaging data is included in model build-
ing (for example clinical records, in which the means of features 
such as age represent sensitive information). Finally, encrypted 
inference reveals no information about the data or the model to 
either party.

Compared with fully homomorphic encryption protocols40 rely-
ing on key-based cryptography, whose implementation for neural 
network training and inference is impeded by the computational 
complexity of the encryption process and the performance decrease 
due to function approximation for for example activation func-
tions, communication overhead has traditionally been the limit-
ing factor for SMPC. In our recent work, we introduced AriaNN26, 
an SMPC protocol leveraging function secret sharing (FSS)28 and 
building upon SPDZ25. It represents an alternative to protocols like 
SecureNN29 or Falcon41, and computes private comparisons with 
a single round of communication. This renders FSS substantially 
more communication-efficient than other SMPC protocols, espe-
cially when parties are geographically distant and communicate 
with high latency, for example when performing inference over the 
public web as showcased in our study. Through the present use-case, 
we confirm the results obtained in our previous work on other data-
sets: secure inference gains proportionally greater benefits from the 
FSS protocol in the high-latency setting. Thus, we propose its utili-
zation over SecureNN in cases a reduction in latency is desired in an 
honest-but-curious setting.

Comparison to prior work. Several current works aim to intro-
duce PPML techniques to biomedical imaging: Silva et al.42 pres-
ent a front-end FL framework for biomedicine, but do not consider 
DP, SecAgg or encrypted inference. Xu and colleagues (https://
bit.ly/3pl5dD1) provide a framework for FL using homomorphic 
encryption for SecAgg, but do not utilize DP or provide encrypted 
inference capabilities. Sheller et al.43 showcase an FL use-case based 
on segmentation. They do not assess either DP, SecAgg or the 
option for encrypted inference. Li et al.44 also demonstrate an FL 
segmentation task. Their DP implementation relies on an alterna-
tive technique (sparse vector) and the framework does not provide 
secure aggregation or encrypted inference. The work by Lu and 
colleagues45 demonstrates FL with DP, however their use-case is 
focused around pathology slides and does not employ SecAgg or 
provide encrypted inference capabilities. Li et al.46 utilize DP, how-
ever assume a fixed sensitivity and do not conduct privacy analysis. 
Their framework does not offer SecAgg or encrypted inference.

Limitations. We consider the following limitations of our work. 
The computational requirements for deploying our system are sub-
stantial, and the latency resulting from encrypted inference is still 
very high compared to unencrypted inference, despite the proposed 
protocol improvements. The underlying remote execution environ-
ment currently offers experimental graphics processing unit (GPU) 
support, with full support planned for an upcoming version. The 
success of FL models is largely dependent on high data quality on 

Original DP–/SecAgg– DP+/SecAgg+a

b

c

d

Fig. 5 | Overview of the gradient-based privacy attacks against PriMIA 
using the MedNIST dataset in a variety of scenarios. The original image is 
shown (original) alongside the reconstruction results from a model trained 
without secure aggregation or DP (DP–/SecAgg–) as well as a model 
trained with DP and SecAgg (DP+/SecAgg+). In every case, the attack 
reveals confidential information about the patient when the model is trained 
without privacy-enhancing techniques. a, Breast MRI revealing absence 
of the right breast, likely due to operative removal due to breast cancer. b, 
Breast MRI revealing breast implants. Both a and b also allow assumptions 
about the patient’s sex. c, Cranial computed tomography image at the level 
of the nose. Facial contours reconstructed from such images can lead to 
personal identification39. d, Abdominal CT at the level of the liver, allowing 
visualization of a hypodense lesion in the left liver lobe in the reconstructed 
image. In every case, using DP thwarts the attack, disallowing any usable 
image features from being visualized. CT images licensed under the 
Creative Commons CC BY-SA 4.0.
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over the entire confederation using the Tree-Structured Parzen 
Estimator algorithm38. Experimental data showcasing the utiliza-
tion of our hyperparameter selection framework to search for the 
optimal FL model can be found in Supplementary Section 1 and 
Supplementary Fig. 1. All above-mentioned training optimiza-
tions are implemented locally on the nodes and do not negatively 
impact privacy guarantees. Hyperparameter tuning, however, 
must be considered when DP is utilized, as it relies on multiple 
training repetitions.

Discussion on privacy-enhancing techniques. The inclusion of 
methods offering provable privacy and security guarantees in the 
FL process is a crucial step towards the widespread implementation 
of privacy-preserving AI technologies8. The successful reconstruc-
tion of images from unprotected models in our attack experiments 
underline the risks of such attacks to patient privacy, which has also 
been discussed in previous work6,39. DP training provides objective 
privacy guarantees in case of attacks against the model both by con-
federation members and during inference and is not limited to the 
gradient-based inversion attack we use in our example. SecAgg uti-
lizing SMPC only discloses the aggregate model update to the par-
ties, even in case up to n − 1 out of n parties collude to reveal data. 
The DP secure aggregation of dataset statistics (means and standard 
deviations) we propose can protect FL participants from data leak-
age, especially when non-imaging data is included in model build-
ing (for example clinical records, in which the means of features 
such as age represent sensitive information). Finally, encrypted 
inference reveals no information about the data or the model to 
either party.

Compared with fully homomorphic encryption protocols40 rely-
ing on key-based cryptography, whose implementation for neural 
network training and inference is impeded by the computational 
complexity of the encryption process and the performance decrease 
due to function approximation for for example activation func-
tions, communication overhead has traditionally been the limit-
ing factor for SMPC. In our recent work, we introduced AriaNN26, 
an SMPC protocol leveraging function secret sharing (FSS)28 and 
building upon SPDZ25. It represents an alternative to protocols like 
SecureNN29 or Falcon41, and computes private comparisons with 
a single round of communication. This renders FSS substantially 
more communication-efficient than other SMPC protocols, espe-
cially when parties are geographically distant and communicate 
with high latency, for example when performing inference over the 
public web as showcased in our study. Through the present use-case, 
we confirm the results obtained in our previous work on other data-
sets: secure inference gains proportionally greater benefits from the 
FSS protocol in the high-latency setting. Thus, we propose its utili-
zation over SecureNN in cases a reduction in latency is desired in an 
honest-but-curious setting.

Comparison to prior work. Several current works aim to intro-
duce PPML techniques to biomedical imaging: Silva et al.42 pres-
ent a front-end FL framework for biomedicine, but do not consider 
DP, SecAgg or encrypted inference. Xu and colleagues (https://
bit.ly/3pl5dD1) provide a framework for FL using homomorphic 
encryption for SecAgg, but do not utilize DP or provide encrypted 
inference capabilities. Sheller et al.43 showcase an FL use-case based 
on segmentation. They do not assess either DP, SecAgg or the 
option for encrypted inference. Li et al.44 also demonstrate an FL 
segmentation task. Their DP implementation relies on an alterna-
tive technique (sparse vector) and the framework does not provide 
secure aggregation or encrypted inference. The work by Lu and 
colleagues45 demonstrates FL with DP, however their use-case is 
focused around pathology slides and does not employ SecAgg or 
provide encrypted inference capabilities. Li et al.46 utilize DP, how-
ever assume a fixed sensitivity and do not conduct privacy analysis. 
Their framework does not offer SecAgg or encrypted inference.

Limitations. We consider the following limitations of our work. 
The computational requirements for deploying our system are sub-
stantial, and the latency resulting from encrypted inference is still 
very high compared to unencrypted inference, despite the proposed 
protocol improvements. The underlying remote execution environ-
ment currently offers experimental graphics processing unit (GPU) 
support, with full support planned for an upcoming version. The 
success of FL models is largely dependent on high data quality on 
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Fig. 5 | Overview of the gradient-based privacy attacks against PriMIA 
using the MedNIST dataset in a variety of scenarios. The original image is 
shown (original) alongside the reconstruction results from a model trained 
without secure aggregation or DP (DP–/SecAgg–) as well as a model 
trained with DP and SecAgg (DP+/SecAgg+). In every case, the attack 
reveals confidential information about the patient when the model is trained 
without privacy-enhancing techniques. a, Breast MRI revealing absence 
of the right breast, likely due to operative removal due to breast cancer. b, 
Breast MRI revealing breast implants. Both a and b also allow assumptions 
about the patient’s sex. c, Cranial computed tomography image at the level 
of the nose. Facial contours reconstructed from such images can lead to 
personal identification39. d, Abdominal CT at the level of the liver, allowing 
visualization of a hypodense lesion in the left liver lobe in the reconstructed 
image. In every case, using DP thwarts the attack, disallowing any usable 
image features from being visualized. CT images licensed under the 
Creative Commons CC BY-SA 4.0.
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The rapid evolution of artificial intelligence (AI) and machine 
learning (ML) in biomedical data analysis has recently 
yielded encouraging results, showcasing AI systems able to 

assist clinicians in a variety of scenarios, such as the early detection 
of cancers in medical imaging1,2. Such systems are maturing past 
the proof-of-concept stage and are expected to reach widespread 
application in the coming years as witnessed by rising numbers 
of patent applications3 and regulatory approvals4. The common 
denominator of high-performance AI systems is the requirement 
for large and diverse datasets for training the ML models, often 
achieved by voluntary data sharing on behalf of the data owners 
and multi-institutional or multi-national dataset accumulation. It’s 
common for patient data to be anonymized or pseudonymized at 
the originating institution, then transmitted to and stored at the 
site of analysis and model training (known as centralized data shar-
ing)5. However, anonymization has proven to provide insufficient 
protection against re-identification attacks6,7. Therefore, large-scale 
collection, aggregation and transmission of patient data is critical 
from a legal and an ethical viewpoint8. Furthermore, it is a funda-
mental patient right to be in control of the storage, transmission and 
usage of personal health data. Centralized data sharing practically 
eliminates this control, leading to a loss of sovereignty. Moreover, 
anonymized data, once transmitted, cannot easily be retrospectively 
corrected or augmented, for example by introducing additional 
clinical information that becomes available.

Despite these concerns, the increasing demand for data-driven 
solutions is likely to increase health-related data collection, not only 
from medical imaging datasets, clinical records and hospital patient 
data, but also for example via wearable health sensors and mobile 

devices9. Hence, innovative solutions are required reconcile data 
and protect privacy. Secure and privacy-preserving machine learn-
ing (PPML) aims to protect data security, privacy and confidential-
ity, while still permitting useful conclusions from the data or its use 
for model development. In practice, PPML enables state-of-the-art 
model development in low-trust environments despite limited local 
data availability. Such environments are common in medicine, 
where data owners cannot rely on other parties’ privacy and confi-
dentiality compliance. PPML can also provide guarantees to model 
owners that their model will not be modified, stolen or misused, 
for example by its encryption during use. This lays the groundwork 
for sustainable collaborative model development and commercial 
deployment by alleviating concerns of asset protection.

Evidence from prior work
Recent work has shown the utility of PPML in biomedical science 
and medical imaging in particular. For instance, federated learning 
(FL) is a decentralized computation technique based on distribut-
ing machine learning models to the data owners (also referred to as 
computation nodes) for decentralized training instead of centrally 
aggregating datasets. It has been proposed as a method to facilitate 
multi-national collaboration while obviating data transfer. In the set-
ting of the COVID-19 pandemic10,11 FL was used to allow the reten-
tion of data sovereignty and the enforcement of local governance 
policies over data repositories. In medical imaging, recent studies5,12 
demonstrated that federated training of deep learning models on 
brain tumour segmentation or breast density classification performs 
on-par with local training and that it fosters the inclusion of data 
from more diverse sources, leading to improved generalization. 

End-to-end privacy preserving deep learning on 
multi-institutional medical imaging
Georgios Kaissis! !1,2,3,4,13, Alexander Ziller! !1,2,4,13, Jonathan Passerat-Palmbach3,4,5, Théo Ryffel! !4,6,7, 
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Rickmer Braren! !1,12 ✉

Using large, multi-national datasets for high-performance medical imaging AI systems requires innovation in privacy-preserving 
machine learning so models can train on sensitive data without requiring data transfer. Here we present PriMIA 
(Privacy-preserving Medical Image Analysis), a free, open-source software framework for differentially private, securely 
aggregated federated learning and encrypted inference on medical imaging data. We test PriMIA using a real-life case study in 
which an expert-level deep convolutional neural network classifies paediatric chest X-rays; the resulting model’s classification 
performance is on par with locally, non-securely trained models. We theoretically and empirically evaluate our framework’s per-
formance and privacy guarantees, and demonstrate that the protections provided prevent the reconstruction of usable data by 
a gradient-based model inversion attack. Finally, we successfully employ the trained model in an end-to-end encrypted remote 
inference scenario using secure multi-party computation to prevent the disclosure of the data and the model.
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Privacy-preserving machine learning:
Differentially private stochastic gradient descent

• Algorithm:
1. Compute gradients for each 

individual sample (they represent 
independent clients)

2. Clip the calculated gradients to 
obtain a known sensitivity

3. Add the noise scaled by the 
sensitivity from step 2

4. Perform the gradient descent step

Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the 2016 
ACM SIGSAC conference on computer and communications security. 2016.
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over the entire confederation using the Tree-Structured Parzen 
Estimator algorithm38. Experimental data showcasing the utiliza-
tion of our hyperparameter selection framework to search for the 
optimal FL model can be found in Supplementary Section 1 and 
Supplementary Fig. 1. All above-mentioned training optimiza-
tions are implemented locally on the nodes and do not negatively 
impact privacy guarantees. Hyperparameter tuning, however, 
must be considered when DP is utilized, as it relies on multiple 
training repetitions.

Discussion on privacy-enhancing techniques. The inclusion of 
methods offering provable privacy and security guarantees in the 
FL process is a crucial step towards the widespread implementation 
of privacy-preserving AI technologies8. The successful reconstruc-
tion of images from unprotected models in our attack experiments 
underline the risks of such attacks to patient privacy, which has also 
been discussed in previous work6,39. DP training provides objective 
privacy guarantees in case of attacks against the model both by con-
federation members and during inference and is not limited to the 
gradient-based inversion attack we use in our example. SecAgg uti-
lizing SMPC only discloses the aggregate model update to the par-
ties, even in case up to n − 1 out of n parties collude to reveal data. 
The DP secure aggregation of dataset statistics (means and standard 
deviations) we propose can protect FL participants from data leak-
age, especially when non-imaging data is included in model build-
ing (for example clinical records, in which the means of features 
such as age represent sensitive information). Finally, encrypted 
inference reveals no information about the data or the model to 
either party.

Compared with fully homomorphic encryption protocols40 rely-
ing on key-based cryptography, whose implementation for neural 
network training and inference is impeded by the computational 
complexity of the encryption process and the performance decrease 
due to function approximation for for example activation func-
tions, communication overhead has traditionally been the limit-
ing factor for SMPC. In our recent work, we introduced AriaNN26, 
an SMPC protocol leveraging function secret sharing (FSS)28 and 
building upon SPDZ25. It represents an alternative to protocols like 
SecureNN29 or Falcon41, and computes private comparisons with 
a single round of communication. This renders FSS substantially 
more communication-efficient than other SMPC protocols, espe-
cially when parties are geographically distant and communicate 
with high latency, for example when performing inference over the 
public web as showcased in our study. Through the present use-case, 
we confirm the results obtained in our previous work on other data-
sets: secure inference gains proportionally greater benefits from the 
FSS protocol in the high-latency setting. Thus, we propose its utili-
zation over SecureNN in cases a reduction in latency is desired in an 
honest-but-curious setting.

Comparison to prior work. Several current works aim to intro-
duce PPML techniques to biomedical imaging: Silva et al.42 pres-
ent a front-end FL framework for biomedicine, but do not consider 
DP, SecAgg or encrypted inference. Xu and colleagues (https://
bit.ly/3pl5dD1) provide a framework for FL using homomorphic 
encryption for SecAgg, but do not utilize DP or provide encrypted 
inference capabilities. Sheller et al.43 showcase an FL use-case based 
on segmentation. They do not assess either DP, SecAgg or the 
option for encrypted inference. Li et al.44 also demonstrate an FL 
segmentation task. Their DP implementation relies on an alterna-
tive technique (sparse vector) and the framework does not provide 
secure aggregation or encrypted inference. The work by Lu and 
colleagues45 demonstrates FL with DP, however their use-case is 
focused around pathology slides and does not employ SecAgg or 
provide encrypted inference capabilities. Li et al.46 utilize DP, how-
ever assume a fixed sensitivity and do not conduct privacy analysis. 
Their framework does not offer SecAgg or encrypted inference.

Limitations. We consider the following limitations of our work. 
The computational requirements for deploying our system are sub-
stantial, and the latency resulting from encrypted inference is still 
very high compared to unencrypted inference, despite the proposed 
protocol improvements. The underlying remote execution environ-
ment currently offers experimental graphics processing unit (GPU) 
support, with full support planned for an upcoming version. The 
success of FL models is largely dependent on high data quality on 
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Fig. 5 | Overview of the gradient-based privacy attacks against PriMIA 
using the MedNIST dataset in a variety of scenarios. The original image is 
shown (original) alongside the reconstruction results from a model trained 
without secure aggregation or DP (DP–/SecAgg–) as well as a model 
trained with DP and SecAgg (DP+/SecAgg+). In every case, the attack 
reveals confidential information about the patient when the model is trained 
without privacy-enhancing techniques. a, Breast MRI revealing absence 
of the right breast, likely due to operative removal due to breast cancer. b, 
Breast MRI revealing breast implants. Both a and b also allow assumptions 
about the patient’s sex. c, Cranial computed tomography image at the level 
of the nose. Facial contours reconstructed from such images can lead to 
personal identification39. d, Abdominal CT at the level of the liver, allowing 
visualization of a hypodense lesion in the left liver lobe in the reconstructed 
image. In every case, using DP thwarts the attack, disallowing any usable 
image features from being visualized. CT images licensed under the 
Creative Commons CC BY-SA 4.0.
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over the entire confederation using the Tree-Structured Parzen 
Estimator algorithm38. Experimental data showcasing the utiliza-
tion of our hyperparameter selection framework to search for the 
optimal FL model can be found in Supplementary Section 1 and 
Supplementary Fig. 1. All above-mentioned training optimiza-
tions are implemented locally on the nodes and do not negatively 
impact privacy guarantees. Hyperparameter tuning, however, 
must be considered when DP is utilized, as it relies on multiple 
training repetitions.

Discussion on privacy-enhancing techniques. The inclusion of 
methods offering provable privacy and security guarantees in the 
FL process is a crucial step towards the widespread implementation 
of privacy-preserving AI technologies8. The successful reconstruc-
tion of images from unprotected models in our attack experiments 
underline the risks of such attacks to patient privacy, which has also 
been discussed in previous work6,39. DP training provides objective 
privacy guarantees in case of attacks against the model both by con-
federation members and during inference and is not limited to the 
gradient-based inversion attack we use in our example. SecAgg uti-
lizing SMPC only discloses the aggregate model update to the par-
ties, even in case up to n − 1 out of n parties collude to reveal data. 
The DP secure aggregation of dataset statistics (means and standard 
deviations) we propose can protect FL participants from data leak-
age, especially when non-imaging data is included in model build-
ing (for example clinical records, in which the means of features 
such as age represent sensitive information). Finally, encrypted 
inference reveals no information about the data or the model to 
either party.

Compared with fully homomorphic encryption protocols40 rely-
ing on key-based cryptography, whose implementation for neural 
network training and inference is impeded by the computational 
complexity of the encryption process and the performance decrease 
due to function approximation for for example activation func-
tions, communication overhead has traditionally been the limit-
ing factor for SMPC. In our recent work, we introduced AriaNN26, 
an SMPC protocol leveraging function secret sharing (FSS)28 and 
building upon SPDZ25. It represents an alternative to protocols like 
SecureNN29 or Falcon41, and computes private comparisons with 
a single round of communication. This renders FSS substantially 
more communication-efficient than other SMPC protocols, espe-
cially when parties are geographically distant and communicate 
with high latency, for example when performing inference over the 
public web as showcased in our study. Through the present use-case, 
we confirm the results obtained in our previous work on other data-
sets: secure inference gains proportionally greater benefits from the 
FSS protocol in the high-latency setting. Thus, we propose its utili-
zation over SecureNN in cases a reduction in latency is desired in an 
honest-but-curious setting.

Comparison to prior work. Several current works aim to intro-
duce PPML techniques to biomedical imaging: Silva et al.42 pres-
ent a front-end FL framework for biomedicine, but do not consider 
DP, SecAgg or encrypted inference. Xu and colleagues (https://
bit.ly/3pl5dD1) provide a framework for FL using homomorphic 
encryption for SecAgg, but do not utilize DP or provide encrypted 
inference capabilities. Sheller et al.43 showcase an FL use-case based 
on segmentation. They do not assess either DP, SecAgg or the 
option for encrypted inference. Li et al.44 also demonstrate an FL 
segmentation task. Their DP implementation relies on an alterna-
tive technique (sparse vector) and the framework does not provide 
secure aggregation or encrypted inference. The work by Lu and 
colleagues45 demonstrates FL with DP, however their use-case is 
focused around pathology slides and does not employ SecAgg or 
provide encrypted inference capabilities. Li et al.46 utilize DP, how-
ever assume a fixed sensitivity and do not conduct privacy analysis. 
Their framework does not offer SecAgg or encrypted inference.

Limitations. We consider the following limitations of our work. 
The computational requirements for deploying our system are sub-
stantial, and the latency resulting from encrypted inference is still 
very high compared to unencrypted inference, despite the proposed 
protocol improvements. The underlying remote execution environ-
ment currently offers experimental graphics processing unit (GPU) 
support, with full support planned for an upcoming version. The 
success of FL models is largely dependent on high data quality on 
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Fig. 5 | Overview of the gradient-based privacy attacks against PriMIA 
using the MedNIST dataset in a variety of scenarios. The original image is 
shown (original) alongside the reconstruction results from a model trained 
without secure aggregation or DP (DP–/SecAgg–) as well as a model 
trained with DP and SecAgg (DP+/SecAgg+). In every case, the attack 
reveals confidential information about the patient when the model is trained 
without privacy-enhancing techniques. a, Breast MRI revealing absence 
of the right breast, likely due to operative removal due to breast cancer. b, 
Breast MRI revealing breast implants. Both a and b also allow assumptions 
about the patient’s sex. c, Cranial computed tomography image at the level 
of the nose. Facial contours reconstructed from such images can lead to 
personal identification39. d, Abdominal CT at the level of the liver, allowing 
visualization of a hypodense lesion in the left liver lobe in the reconstructed 
image. In every case, using DP thwarts the attack, disallowing any usable 
image features from being visualized. CT images licensed under the 
Creative Commons CC BY-SA 4.0.
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over the entire confederation using the Tree-Structured Parzen 
Estimator algorithm38. Experimental data showcasing the utiliza-
tion of our hyperparameter selection framework to search for the 
optimal FL model can be found in Supplementary Section 1 and 
Supplementary Fig. 1. All above-mentioned training optimiza-
tions are implemented locally on the nodes and do not negatively 
impact privacy guarantees. Hyperparameter tuning, however, 
must be considered when DP is utilized, as it relies on multiple 
training repetitions.

Discussion on privacy-enhancing techniques. The inclusion of 
methods offering provable privacy and security guarantees in the 
FL process is a crucial step towards the widespread implementation 
of privacy-preserving AI technologies8. The successful reconstruc-
tion of images from unprotected models in our attack experiments 
underline the risks of such attacks to patient privacy, which has also 
been discussed in previous work6,39. DP training provides objective 
privacy guarantees in case of attacks against the model both by con-
federation members and during inference and is not limited to the 
gradient-based inversion attack we use in our example. SecAgg uti-
lizing SMPC only discloses the aggregate model update to the par-
ties, even in case up to n − 1 out of n parties collude to reveal data. 
The DP secure aggregation of dataset statistics (means and standard 
deviations) we propose can protect FL participants from data leak-
age, especially when non-imaging data is included in model build-
ing (for example clinical records, in which the means of features 
such as age represent sensitive information). Finally, encrypted 
inference reveals no information about the data or the model to 
either party.

Compared with fully homomorphic encryption protocols40 rely-
ing on key-based cryptography, whose implementation for neural 
network training and inference is impeded by the computational 
complexity of the encryption process and the performance decrease 
due to function approximation for for example activation func-
tions, communication overhead has traditionally been the limit-
ing factor for SMPC. In our recent work, we introduced AriaNN26, 
an SMPC protocol leveraging function secret sharing (FSS)28 and 
building upon SPDZ25. It represents an alternative to protocols like 
SecureNN29 or Falcon41, and computes private comparisons with 
a single round of communication. This renders FSS substantially 
more communication-efficient than other SMPC protocols, espe-
cially when parties are geographically distant and communicate 
with high latency, for example when performing inference over the 
public web as showcased in our study. Through the present use-case, 
we confirm the results obtained in our previous work on other data-
sets: secure inference gains proportionally greater benefits from the 
FSS protocol in the high-latency setting. Thus, we propose its utili-
zation over SecureNN in cases a reduction in latency is desired in an 
honest-but-curious setting.

Comparison to prior work. Several current works aim to intro-
duce PPML techniques to biomedical imaging: Silva et al.42 pres-
ent a front-end FL framework for biomedicine, but do not consider 
DP, SecAgg or encrypted inference. Xu and colleagues (https://
bit.ly/3pl5dD1) provide a framework for FL using homomorphic 
encryption for SecAgg, but do not utilize DP or provide encrypted 
inference capabilities. Sheller et al.43 showcase an FL use-case based 
on segmentation. They do not assess either DP, SecAgg or the 
option for encrypted inference. Li et al.44 also demonstrate an FL 
segmentation task. Their DP implementation relies on an alterna-
tive technique (sparse vector) and the framework does not provide 
secure aggregation or encrypted inference. The work by Lu and 
colleagues45 demonstrates FL with DP, however their use-case is 
focused around pathology slides and does not employ SecAgg or 
provide encrypted inference capabilities. Li et al.46 utilize DP, how-
ever assume a fixed sensitivity and do not conduct privacy analysis. 
Their framework does not offer SecAgg or encrypted inference.

Limitations. We consider the following limitations of our work. 
The computational requirements for deploying our system are sub-
stantial, and the latency resulting from encrypted inference is still 
very high compared to unencrypted inference, despite the proposed 
protocol improvements. The underlying remote execution environ-
ment currently offers experimental graphics processing unit (GPU) 
support, with full support planned for an upcoming version. The 
success of FL models is largely dependent on high data quality on 
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Fig. 5 | Overview of the gradient-based privacy attacks against PriMIA 
using the MedNIST dataset in a variety of scenarios. The original image is 
shown (original) alongside the reconstruction results from a model trained 
without secure aggregation or DP (DP–/SecAgg–) as well as a model 
trained with DP and SecAgg (DP+/SecAgg+). In every case, the attack 
reveals confidential information about the patient when the model is trained 
without privacy-enhancing techniques. a, Breast MRI revealing absence 
of the right breast, likely due to operative removal due to breast cancer. b, 
Breast MRI revealing breast implants. Both a and b also allow assumptions 
about the patient’s sex. c, Cranial computed tomography image at the level 
of the nose. Facial contours reconstructed from such images can lead to 
personal identification39. d, Abdominal CT at the level of the liver, allowing 
visualization of a hypodense lesion in the left liver lobe in the reconstructed 
image. In every case, using DP thwarts the attack, disallowing any usable 
image features from being visualized. CT images licensed under the 
Creative Commons CC BY-SA 4.0.
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over the entire confederation using the Tree-Structured Parzen 
Estimator algorithm38. Experimental data showcasing the utiliza-
tion of our hyperparameter selection framework to search for the 
optimal FL model can be found in Supplementary Section 1 and 
Supplementary Fig. 1. All above-mentioned training optimiza-
tions are implemented locally on the nodes and do not negatively 
impact privacy guarantees. Hyperparameter tuning, however, 
must be considered when DP is utilized, as it relies on multiple 
training repetitions.

Discussion on privacy-enhancing techniques. The inclusion of 
methods offering provable privacy and security guarantees in the 
FL process is a crucial step towards the widespread implementation 
of privacy-preserving AI technologies8. The successful reconstruc-
tion of images from unprotected models in our attack experiments 
underline the risks of such attacks to patient privacy, which has also 
been discussed in previous work6,39. DP training provides objective 
privacy guarantees in case of attacks against the model both by con-
federation members and during inference and is not limited to the 
gradient-based inversion attack we use in our example. SecAgg uti-
lizing SMPC only discloses the aggregate model update to the par-
ties, even in case up to n − 1 out of n parties collude to reveal data. 
The DP secure aggregation of dataset statistics (means and standard 
deviations) we propose can protect FL participants from data leak-
age, especially when non-imaging data is included in model build-
ing (for example clinical records, in which the means of features 
such as age represent sensitive information). Finally, encrypted 
inference reveals no information about the data or the model to 
either party.

Compared with fully homomorphic encryption protocols40 rely-
ing on key-based cryptography, whose implementation for neural 
network training and inference is impeded by the computational 
complexity of the encryption process and the performance decrease 
due to function approximation for for example activation func-
tions, communication overhead has traditionally been the limit-
ing factor for SMPC. In our recent work, we introduced AriaNN26, 
an SMPC protocol leveraging function secret sharing (FSS)28 and 
building upon SPDZ25. It represents an alternative to protocols like 
SecureNN29 or Falcon41, and computes private comparisons with 
a single round of communication. This renders FSS substantially 
more communication-efficient than other SMPC protocols, espe-
cially when parties are geographically distant and communicate 
with high latency, for example when performing inference over the 
public web as showcased in our study. Through the present use-case, 
we confirm the results obtained in our previous work on other data-
sets: secure inference gains proportionally greater benefits from the 
FSS protocol in the high-latency setting. Thus, we propose its utili-
zation over SecureNN in cases a reduction in latency is desired in an 
honest-but-curious setting.

Comparison to prior work. Several current works aim to intro-
duce PPML techniques to biomedical imaging: Silva et al.42 pres-
ent a front-end FL framework for biomedicine, but do not consider 
DP, SecAgg or encrypted inference. Xu and colleagues (https://
bit.ly/3pl5dD1) provide a framework for FL using homomorphic 
encryption for SecAgg, but do not utilize DP or provide encrypted 
inference capabilities. Sheller et al.43 showcase an FL use-case based 
on segmentation. They do not assess either DP, SecAgg or the 
option for encrypted inference. Li et al.44 also demonstrate an FL 
segmentation task. Their DP implementation relies on an alterna-
tive technique (sparse vector) and the framework does not provide 
secure aggregation or encrypted inference. The work by Lu and 
colleagues45 demonstrates FL with DP, however their use-case is 
focused around pathology slides and does not employ SecAgg or 
provide encrypted inference capabilities. Li et al.46 utilize DP, how-
ever assume a fixed sensitivity and do not conduct privacy analysis. 
Their framework does not offer SecAgg or encrypted inference.

Limitations. We consider the following limitations of our work. 
The computational requirements for deploying our system are sub-
stantial, and the latency resulting from encrypted inference is still 
very high compared to unencrypted inference, despite the proposed 
protocol improvements. The underlying remote execution environ-
ment currently offers experimental graphics processing unit (GPU) 
support, with full support planned for an upcoming version. The 
success of FL models is largely dependent on high data quality on 

Original DP–/SecAgg– DP+/SecAgg+a

b

c

d

Fig. 5 | Overview of the gradient-based privacy attacks against PriMIA 
using the MedNIST dataset in a variety of scenarios. The original image is 
shown (original) alongside the reconstruction results from a model trained 
without secure aggregation or DP (DP–/SecAgg–) as well as a model 
trained with DP and SecAgg (DP+/SecAgg+). In every case, the attack 
reveals confidential information about the patient when the model is trained 
without privacy-enhancing techniques. a, Breast MRI revealing absence 
of the right breast, likely due to operative removal due to breast cancer. b, 
Breast MRI revealing breast implants. Both a and b also allow assumptions 
about the patient’s sex. c, Cranial computed tomography image at the level 
of the nose. Facial contours reconstructed from such images can lead to 
personal identification39. d, Abdominal CT at the level of the liver, allowing 
visualization of a hypodense lesion in the left liver lobe in the reconstructed 
image. In every case, using DP thwarts the attack, disallowing any usable 
image features from being visualized. CT images licensed under the 
Creative Commons CC BY-SA 4.0.
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What’s next?



Traditional medical imaging

Reconstruction Analysis InterpretationAcquisition

! Serial process with no interaction between different components of imaging pipeline
! Limited ability for adjustment of upstream imaging pipeline based on downstream 

requirements
! Stages of imaging pipeline not optimized for clinical endpoint



AI-enabled medical imaging

ü Close coupling of acquisition, reconstruction, analysis and interpretation
ü Feedback and interaction between components of imaging pipeline
ü Optimization of whole imaging pipeline with respect to clinical endpoint

Acquisition Reconstruction Analysis Interpretation



AI-enabled medical imaging

"To the question, will AI replace radiologists, I 
say the answer is no…” 

“They should stop training radiologists now.”
Geoffrey Hinton (godfather of deep learning) in 2017

“… but radiologists who do AI will replace 
radiologists who don’t."
Curtis Langlotz in 2017



AI-enabled medical imaging

Acquisition Diagnosis
?

Do we need images at all?
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