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Al/ML in Medicine: There is a lot of hype @

MIT Artificial intelligence / Machine learning

133\22\?\,'09" Hundreds of Al tools have
been built to catch covid.
None of them helped.

Some have been used in hospitals, despite not being properly
tested. But the pandemic could help make medical Al better.

by Will Douglas Heaven July 30,2021




AlI/ML in Medical Imaging

NIM

- Out of 64 AlI/ML based, FDA approved medical devices and
algorithms, 30 (46.9%) for focus on radiology

o MIT
npj | digital medicine Technology
Review

Explore content v Journal information v Publish with us v

nature > npj digital medicine > articles > article

Article | Open Access | Published: 11 September 2020

The state of artificial intelligence-based FDA-approved
medical devices and algorithms: an online database

Stan Benjamens, Pranavsingh Dhunnoo & Bertalan Meské &

Alls Continuing Its Assault on Radiologists

A new model can detect abnormalities in x-rays better than radiologists—in some parts of the
body, anyway.




Al in Medical Imaging: Opportunities

NIM
A

4 )
Diagnosis and Prediction

Computer-aided decision 1
support systems

Screening and Monitoring

>I

Analysis of shape and texture, Quantification of Imaging Biomarkers

Radiomics \ /

4 )

Detection, Loca!isation, Semantic Image Interpretation
Segmentation
Denoising. S 4
enoising, super- Image Enhancement
resolution, Image fusion
a
Accelerated imaging Image Acquisition and Reconstruction

Value proposition
Level of diagnostic support




Learning to reconstruct cardiac MRl /%

K-space Signal space

learning-based

Full sampling reconstruction

(slow)

e.g. compressed
sensing



Deep learning for image reconstruction /@A

] Convolution + RELU  [[] Transposed convolution
B Max pooling B Softmax Skip layers




Deep learning for image reconstruction /@4

Conv. Net

[1 3x3 Convolution Layer
[[1 Rectified Linear Unit
—

Residual Layer

Data Consistency Layer

Schlemper et al. IEEE TMI 2017



Deep learning for image reconstruction

NIM

Conv. Net

[1 3x3 Convolution Layer
[[1 Rectified Linear Unit
—

Residual Layer
Data Consistency Layer

Denoise (via CNN)
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Deep learning for image reconstruction

NIM

Conv. Net

[1 3x3 Convolution Layer
[[1 Rectified Linear Unit
—

Residual Layer
Data Consistency Layer
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Schlemper et al. IEEE TMI 2017



Magnitude reconstruction (6-fold)

(a) 6x Undersampled

Schlemper et al. IEEE TMI 2017



Magnitude reconstruction (11-fold) @

(a) 11x Undersampled

Schlemper et al. IEEE TMI 2017



Al-enabled image super-resolution

» Acquisition of cardiac MRI typically

consists of 2D multi-slice data due to Slice |
— constraints on SNR Sjice Il
— breath-hold time

— total acquisition time Slice Ill

- This leads to thick slice data (thickness
8-10 mm per slice)




Al-enabled image super-resolution

] Convolution + RELU  [[] Transposed convolution
B Max pooling B Softmax Skip layers




Al-enabled image super-resolution

i i &
! '
Linear 1 CNN 3D-LV SAX

Interpolation Super Res Acquisition

= 2D-LV SAX
Acquisition
1.2x1.2x10mm 1.2x1.2x2mm 1.2x1.2x2mm 1.2x1.2X2mm

O. Oktay et al. IEEE TMI 2018



Application to fetal MR imaging

NIM

Fetal example:

1. Long acquisition times
2. Fetal motion and
maternal breathing

fast single-shot techniques
are 2D acquisitions that
freeze the motion in time
but ...




Application to fetal MR imaging /W\RA




Application to fetal MR imaging




Application to fetal MR imaging

NIM

Reconstruction using registration
and super-resolution imaging

Murgasova et al., MEDIA, 2012
Kainz et al., IEEE TMI 2015
Alansary et al., IEEE TMI 2017



Al-enabled image recognition

+ Potential applications: | @
Fetal brain standard planes b

— Guidance: Assist inexperienced sonographers a: Transventricular plane
— Convenience: Automatically make a check list of b: Transthalamic plane Y c
visited planes c: Transcerebellar plane

— Reproducibility: Reduce variability between

operators Image from Ultrasound
Obstet Gynecol, 29: 109-116



Al-enabled image recognition:
Automatic Scan Plane Detection

Confidence: 98%

HHI 000w :> Abdominal View

Confidence: 96%

HHI 000w C Lips View

Goal: Do this in real-time on images straight from US machine
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Input

Automatic Standard Scan
Plane Detection: Attention models /\ M

/
B > | B B B B - c
o O
NNV 5 S
VIV LYV L WI__, T
1Z1%1% & %
%ﬂ Q.
B> Conv3x3 +RelU P Max-Pool /2
® Attention Unit - Global Avg. Pooling

Schlemper et al. MedIA 2019



Automatic Standard Scan
Plane Detection: Attention models /\ M
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Schlemper et al. MedIA 2019



Automatic Standard Scan
Plane Detection in 3D
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Using reinforcement learning and artificial agents . Lietal. MICCAI 2018



Al-enabled image segmentation /@4

'] Convolution + RELU  [] Transposed convolution

B Max pooling B Softmax Skip layers

Bai et al., JCMR 2018



Al-enabled image segmentation

SA, basal SA, mid-ventricular SA, apical

LA, 2 chamber LA, 4 chamber Bai et al., JCMR 2018



biobank Large-scale population analysis

Improving the hea'th of Kure generstions

NIM

 In 2014, UK Biobank began the process of inviting back
100,000 of the original volunteers for brain, heart and body
imaging.

- Imaging is done across several dedicated centres in the UK

® ®® @ imaging (scanning) study | UK b +
C (0 O imaging.ukbiobank ac.uk * O @9 PO O LK -}
i1 Apps W Bookmarks B Imperial College ES News B3 Travel B3 Research B3 Teaching ES Others — My Citations [J cs294 -158 Deep. " ES Other Bookmarks
imoroveng o et of
ntroduction  About  Further Information Imaging Incidental findings  Testimonials News Contactus irections

Improving the health of future generations

Participants scanned
so far - help us make
itto 100,000!

biobank” X ...
b Feedback Form

Wel

Contact us




UK Biobank: Imaging

NIM

Lifestyle

Genetics

Clinical
records




Large-scale population analysis

W. Bai et al., Nature Medicine, 2020



Cardiac IDPs from 26,893 subjects

Associations with sex and age
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W. Bai et al., Nature Medicine, 2020



Phenome-wide association study
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Al for decision support:
Survival prediction /\ M

Slice position

LTI
AL d A &4

CEPPPPPPE

¢ RV blood pool ® RVwall ¢ LVblood pool - LVwall

Cardiac phases

Imperial College
London

Bello et al. Nature Machine Intelligence 2019




Al for decision support:
Survival prediction /\ M

. Learning compressed representations .
3D cardiac models 9 . P Gl o P . Conventional MR parameters
of motion predictive of survival "
100 Logrank p=.0173
% )
w 75 0.50
Frame 1 . E
)
i v 0 3 Time:sy ) 9 12

Machine learning motion analysis

i 100 Logrank p <.0001
Frame20 SOV | e 4 J .
J L I I E
1 ENCODER DECODER 1 ]
2 2 050
Reconstruction loss
0 3 6 9 12
Time (years)
No. at risk
Low Risk 151 56 31 16 [
High Risk 151 44 19 6 [

Imperial College
London

London Institute

S Bello et al. Nature Machine Intelligence 2019
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Al has the potential to revolutionize medicine and
healthcare

But what are the challenges?



Lack of sufficient data: Bias and fairness

NIM

LRI L VSR Obermeyer et al., Science 2019

Dissecting racial bias in an algorithm used to manage
the health of populations

Ziad Obermeyer"?*, Brian Powers®, Christine Vogeli*, Sendhil Mullainathan®*+




Lack of sufficient data: Variability

NIM

« How to deal with variability?

— Population variability (normal vs pathologies)
— Image acquisition variability (e.g. due to scanner differences)

A

Data during training Data during deployment



Lack of sufficient data: Variability

NIM

- How to deal with variability?

— Population variability (normal vs pathologies)
— Image acquisition variability (e.g. due to scanner differences)

- Stress  Rest Cine LGE

Different hardware




Lack of sufficient data;: Domain shift

Source (S)
Domain: Ds = {Xs, P(Xs)} . . X = (X x?)
Task: Ts={Vs, fs:Xs— Vs} argetx( ) = {x, 0}
Given: (Xs,Ys) X2
Xs ={rs1,...,Tsn},%si € X3 < %o
Ys = {ys1,--Ysn} Ysi € Vs x L~
Learn: fs ~ f§ -7 ®
°
fs(x) = Ps(ylo) - °®
e 0‘\(\ S
Target (T) / o((\
Domain: D = {X7, P( Y x D¢
Task: Ir={Vr f ( ’ S o
Here: Yr =Y / @® ,’:. ¢ ¢
Domain Shift §°®
P( ,f ° o ()
Pr(y| P(X7) # P(Xs) !
fr # f3




Lack of sufficient data: How to address?

Learning domain invariant features

P
I

Scanner A

Segmentation Ioss

Discriminator loss

Scanner B —

K. Kamnitsas et al. IPMI 2017

/

Data augmentation

NIM
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C. Chen et al. MICCAI 2020, 2021, 2022
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Training \a
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Network weights re-sampled in
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blending
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IEEE TMI in press
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C. Ouyang et al.,

KL

Prediction
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Privacy-preserving Al/ML

NIM

Access to large datasets during training is critical ...

... but how do we ensure privacy?

ATTACKS
Theft
A/ Inversion
Adversarial
' Manipulation
pm— INPUT PRIVACY @
LEARNING PREVENTING MODEL THEFT
HOMOMORPHIC
ENCRYPTION
SECURE MULTIPARTY
COMPUTATION
nawre . 1l PERSPECTIVE
machine intelligence st v o

( c:o % Q:C z o:a

M) Check for updates

Secure, privacy-preserving and federated machine

[ C‘C..
. PRIVATE Al - oje
i i i i i | ] IN
learning in medical imaging < {3 L - MEDICAL IMAGING
Georgios A. Kaissis'??, Marcus R. Makowski', Daniel Riickert ©2 and Rickmer F. Braren®'> NEDCAL

DATA HOSPITALS

MODEL OWNERS

| o 1
( OUTPUT PRIVACY

@O0 TRAINED MODEL
PREVENTING DATA LEAKAGE &
HOMOMORPHIC ENCRYPTION

- . S/

O~ |

ATTACKS { : :
A ¢ ANONYMIZATION 1 ( -}é

oo ( >4 ——e PSEUDONYMIZATION

Tracing |

s Linkage DIFFERENTIAL PRIVACY



Hospital
A

Federated learning
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Hospital
A

Federated learning
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Federated learning
/\iiM

Model
UPDATED MODEL Owners

Hospital
A Hospital
B

Hospital
C




But federated learning is not enough! @

Privacy-Centred attacks: Utility-Centred attacks:

- Attempt to disclose information - Attempt to subvert the protocol
participants did not consent to and alter the utility of the model
disclosing

- Examples include: - Examples include:

* Membership — Crafting malicious data or updates
- Sensitive attributes — Hidden collateral tasks
+ Training records — etc.

* Reconstruction
+ etc.



But federated learning is not enough! @

a  Original ¢ Original

Kaissis et al. Nature Machine Intelligence, 2021



NIM

Bring privacy-preserving machine learning to clinical
routine

namre . ARTICLES
machine intelligence

‘ '.) Check for updates ‘

End-to-end privacy preserving deep learning on
multi-institutional medical imaging

Georgios Kaissis ®"23413, Alexander Ziller®'243, Jonathan Passerat-Palmbach®4>, Théo Ryffel ®457,
Dmitrii Usynin©®'234 Andrew Trask*2, lonésio Lima Jr*®, Jason Mancuso*', Friederike Jungmann’,
Marc-Matthias Steinborn©", Andreas Saleh", Marcus Makowski', Daniel Rueckert?® and

Rickmer Braren ®"12X



Privacy-preserving machine learning:
Differential privacy /\ M

DatabaseD, = —— Analysis M — Answer A

e’
o+
Joe's Data —~

DatabaseD, =~ —— Analysis M Answer B
s’

. : Forall D. and D Answer A and

Analysis M satisfies which diffler in orzte answer B are

differential privacy if... individual's data.. indistinguishable

Figure from https://www.nist.gov/blogs/cybersecurity-insights/differential-privacy-privacy-preserving-data-analysis-introduction-our



https://www.nist.gov/blogs/cybersecurity-insights/differential-privacy-privacy-preserving-data-analysis-introduction-our

Privacy-preserving machine learning:
Differential privacy /\ M

Probability of seeing

output Ooninputt; —— Pr{M(D;) € Ol Indistinguishability:
< eg -~  bounded ratio of
Probability of seeing __— PriM(D-) € O] probabilities

output O on input D:

Figure from https://www.nist.gov/blogs/cybersecurity-insights/differential-privacy-privacy-preserving-data-analysis-introduction-our



https://www.nist.gov/blogs/cybersecurity-insights/differential-privacy-privacy-preserving-data-analysis-introduction-our

Privacy-preserving machine learning:
Differentially private stochastic gradient descent

- Algorithm:

1.

_(:O':nPUte gradlents for each Algorithm 1 Differentially private SGD (Outline)
!ﬂleldual Sample (they represent Input: Examples {z1,..., xn}, loss function L(#) =
mdependent cllents) % >, L(0,x;). Parameters: learning rate 1., noise scale
) ) o, group size L, gradient norm bound C.

Clip the calculated gradients to Initialize 6, randomly
obtain a known sensitivity for t € [T] do

i Take a random sample L: with sampling probability
Add the noise scaled by the L/N
sensitivity from step 2 Compute gradient |

_ For each i € L,, compute g,(x;) « Vg, L(0,, ;)

Perform the gradient descent step Clip gradient

gi(zi) < ge(xi)/ max (1, Lb_'(_‘._’_l_-)

Add noise '

gt — 1 2 (8(x:i) + N(0,0°C°1))

Descent

Oriy 0y — g
Output fr and compute the overall privacy cost (z,4)
using a privacy accounting method.

Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the 2016
ACM SIGSAC conference on computer and communications security. 2016.



Privacy-preserving machine learning:
Adding differential privacy

a  Original Model Inversion ¢ Original Model Inversion

Kaissis et al. Nature Machine Intelligence, 2021



Privacy-preserving machine learning:
Adding differential privacy /\ M

a  Original Model Inversion with DP ¢ Original Model Inversion with DP

Kaissis et al. Nature Machine Intelligence, 2021



What's next?




Traditional medical imaging

\
1\ 26!
Acquisition Reconstruction Analysis Interpretation
% J U " \oEsE e g (TP J
[ )

X Serial process with no interaction between different components of imaging pipeline
X Limited ability for adjustment of upstream imaging pipeline based on downstream
requirements
\ X Stages of imaging pipeline not optimized for clinical endpoint p




Al-enabled medical imaging

Acquisition Reconstruction Analysis Interpretation
N ,
4 )
v" Close coupling of acquisition, reconstruction, analysis and interpretation :
v Feedback and interaction between components of imaging pipeline JAWE poED
v" Optimization of whole imaging pipeline with respect to clinical endpoint )




Al-enabled medical imaging

NIM

“They should stop training radiologists now.”
Geoffrey Hinton (godfather of deep learning) in 2017

"To the question, will Al replace radiologists, |
say the answer is no...”

“... but radiologists who do Al will replace
radiologists who don't."
Curtis Langlotz in 2017

RSNA News
Machine Learning Plays Central Role at -
RSNA 2017 4
BY MIKE BASSETT

Langlotz

Machine Learning (ML) and the role it will play in the future of radiology will
be central to a broad scope of programming at RSNA 2017.



NIM

Al-enabled medical imaging

Diagnosis )
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Do we need images at all?
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