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Motivation

Model understanding is absolutely critical in several domains --
particularly those involving high stakes decisions!




[ Larson et. al. 2016 ]

Motivation: Why Model Understanding?
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https://arxiv.org/abs/1606.03490
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[ Letham and Rudin 2015; Lakkaraju et. al. 2016 ]

Achieving Model Understanding

Take 1: Build inherently interpretable predictive models

Tear production rate

if (age = 18 — 20) and (sex = male) then predict yes

else if (age = 21 — 23) and (priors = 2 — 3) then predict yes
else if (priors > 3) then predict yes

else predict no

not presbyopic presbyopic myope hypermetrope

not young




[ Ribeiro et. al. 2016, 2018; Lakkaraju et. al. 2019]

Achieving Model Understanding

Take 2: Explain pre-built models in a post-hoc manner

. Explainer - m

if (age = 18 — 20) and (sex = male) then predict yes
else if (age =21 —23) and (priors = 2 — 3) then predict yes
else if (priors > 3) then predict yes

else predict no
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[ Ciresan et. al. 2012, Caruana et. al. 2006, Frosst et. al. 2017, Stewart 2020]

Inherently Interpretable Models vs.
Post hoc Explanations

Interpret-
ability

@ Linear Regression

@ Decision Trees

@ SVMs

Random Forests @

Neural Networks @

Accuracy

In certain settings, accuracy-interpretability trade offs may exist.

In certain settings, you may just have access to a (proprietary) black box.


https://arxiv.org/search/cs?searchtype=author&query=Cire%C5%9Fan%2C+D

Feature Attribution Based Local Explanations

- Local explanations
- explain individual predictions of any classifier

- Output feature attributions for individual instances, which capture the
effect/contribution of each feature on the black box prediction

- Examples: LIME, SHAP, Gradient, Gradient times Input, SmoothGrad,
Integrated Gradients



Disagreement Problem in XAI: Overview

- Study to understand:

- if and how often feature attribution based explanation methods disagree
with each other in practice

- What constitutes disagreement between these explanations, and how to
formalize the notion of explanation disagreement based on practitioner
inputs?

- How do practitioners resolve explanation disagreement?

Krishna and Han et. al., 2022 ¢



Practitioner Inputs on Explanation Disagreement

. 30 minute semi-structured interviews with 25 data scientists

- 84% of participants said they often encountered disagreement
between explanation methods

- Characterizing disagreement:
- Top features are different
- Ordering among top features is different
- Direction of top feature contributions is different
- Relative ordering of features of interest is different
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Practitioner Inputs on Explanation Disagreement

- Participants typically characterize explanation disagreement
based on factors such as:

- mismatch in top features,
- feature ordering, and
- directions of feature contributions,

- But NOT on the feature importance values output by different
explanation methods

. 24 out of 25 participants (96%) in our study opine that feature
importance values output by different explanation methods are
not directly comparable
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Practitioner Inputs on Explanation Disagreement

- Quote: “The values generated by different explanation methods are clearly
different. So,  would not characterize disagreement based on that. But, |
would at least want the explanations they output to give me consistent
insights. The explanations should agree on what are the most important
features, the ordering among them and so on for me to derive consistent
insights. But, they don’t!”
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Formalizing the Notion of
Explanation Disagreement (Top K)

Peaturedgresnvend(E, By By |top _features(E,, k) ; top_ features(Ey, k)|

Rank Agreement(E,, Ey, k)
| U {s | s€top_features(Es, k) A s € top_features(Ey, k) A rank(E,, s) = rank(Ey, s)}|

seS
k

SignAgreement(E,, Ey, k)

| U{s | setop_features(E,, k) A s € top_features(Ey, k) A sign(E,, s) = sign(Ey, s)}|
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k

SignedRankAgreement(E,, Ey, k)

| U{s | s €top_features(Eq, k) A s € top_ features(Ey, k)
seS
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Formalizing the Notion of Explanation
Disagreement (Features of Interest)

Spearman rank correlation coefficient computed over features of interest

RankCorrelation(E,, Ey, F) = rs(Ranking(E,, F'), Ranking(Ey, F))

2. 1[RelativeRanking(Ea, fi, f;) = RelativeRanking(Es, fi, f;)]
PairwiseRankAgreement(Eq,, Ey, F) = =2 i (|F|)
2
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Empirical Analysis of
Explanation Disagreement

Rank agreement (k = 5) Signed rank agreement (k = 5)

LIME 0.381 0.001 0358 0.360 0.001 LIME [RBCElN 0.226 0.000 0.326 0.329 0.000

Kernel ; Kernel
sHap | 2981 0.030 0246 0.250 0.030 Kamel 0.226 0020 0.141 0.144 0.019
0.096 0.095 gex:El Grad 0.000 0.020 0.000 0.000 JOKEL

?;:clij‘t 0.358 0.246 0.096 0.000 WRKU 0.000

Grad 0.001 0.030

Grad® 10326 0.141
Input

URexya 0.092

IntGrad ' 0.360 0.250 0.095 Heickyg IntGrad | 0.329 0.144 0.000 FOEKMMRKGLE 0.000

Smooth 5 th
Grap 0001 0.030 RUEELY 0.092 0.090 Smooth 0,000 0.019 [JEEEN 0.000 0.000 [EEG

LIME Kernel Grad Grad® IntGrad Smooth LIME Kerel Grad Grad* IntGrad Smooth
SHAP Input GRAD SHAP Input GRAD
COMPAS data, NN COMPAS data, NN

* We carried out empirical analysis with 6 post hoc explanation methods, 4 real world datasets (tabular,
NLP, images), 8 model classes, and found several disagreements between explanation methods



ow do Practitioners Resolve Disagreements?

Below, you see a data point, as well as its explanation using methods LIME and KernelSHAP.

LIME KernelSHAP

o s . |
oy [— =l

® ¢
N . —
£ &
c_charge_degree_F - c_charge_degree F -
sex_Female I sex_Female -
- — s |
-0.10 -0.05 0.00 005 0.10 -0.10 -0.05 0.00 0.05 0.10
Feature importance Feature importance

As a reminder, the 7 features of the COMPAS dataset are age, two_year_recid (whether the defendant recidivated after 2 years of the original crime, priors_count (number of prior
crimes committed), length_of_stay (length the defendant stayed in jail), c_charge_degree (whether the previous charge was a Misdemeanor or Felony), sex, and race

To what extent do you think the two explanations shown above agree or disagree with each other?
) Completely agree ® Mostly agree ' 'Mostly disagree (' Completely disagree

Please explain why you chose the above answer.

| )

Since you believe that the above explanations disagree (to some extent), which explanation would you rely on?
_ LIME explanation @ KernelSHAP explanation (It depends

Please explain why you chose the above answer.
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How do Practitioners Resolve Disagreements?

- Online user study where 25 users were shown explanations that
disagree and asked to make a choice, and explain why

- Practitioners are choosing methods due to:
- Associated theory or publication time (33%)

- Explanations matching human intuition better (32%)

- Type of data (23%)
« E.g, LIME or SHAP are better for tabular data
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How do Practitioners Resolve Disagreements?

Algorithm Reasons that algorithm was chosen in disagreement
e [36%] SHAP is better for tabular data ("SHAP is more commonly used
KernelSHAP [than Gradient] for tabular data")

e [25%| SHAP is more familiar ("More information present + more
familiarity")

e [14%| SHAP is a better algorithm overall ("SHAP seems more method-
ical than LIME", "SHAP is a more rigorous approach [than LIME] in
theory™)

e [33%] SmoothGrad paper is newer or better ("SmoothGrad is apparently
more robust”, "SmoothGrad is often considered improved verison of grad")
e [58%] Reasons based on the explainability map shown ( "directionality
of the attributions ... [agree] with intuition”, "gradient has unstability
problems [, so] smoothgrad")

e [54%| LIME is better for tabular data ("I use LIME for structured
data.")

e [15%] LIME is more familiar/easier to interpret ("I am more familiar
with LIME", "LIME is easy to interpret”)

Integrated e [86%)] Integrated Gradients paper is better ("IG came after gradi-
Gradients ents and paper shows improvements”, "integrated gradients paper showed
improvements [over Gradient x Input/”

SmoothGrad

LIME
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Insights and Moving Forward

- Feature attribution methods often disagree in practice w.r.t. basic
insights, and practitioners adopt ad hoc heuristics to resolve
those disagreements!

- Why do feature attribution methods disagree?

- Given that feature attribution methods disagree, which
explanation method should we choose for different kinds of data
and applications?

19



Why do Feature Attribution Methods
Disagree?

- Various feature attribution methods (e.g., LIME, C-LIME,
KernelSHAP, Occlusion, Vanilla Gradients, Gradient times Input,

SmoothGrad, Integrated Gradients) are essentially local function
approximations.

g*:a’rgmin E é(fag7x07§)
geg §E~Z

- But...

Han et. al., NeurlPS 2022 20



Why do Feature Attribution Methods
Disagree?

But, they adopt different loss functions, and local neighborhoods

Explanation Method Local Neighborhood Z around x Loss Function /
C-LIME X0 + &; £(€ R?) ~ Normal(0, 02) Squared Error
SmoothGrad xo + &; £(€ R%) ~ Normal(0, 0?) Gradient Matching
Vanilla Gradients xo + &; (€ R?) ~ Normal(0, 02),0 — 0 Gradient Matching
Integrated Gradients ¢xo; &£(€ R) ~ Uniform(0, 1) Gradient Matching
Gradients x Input £xo; £(€ R) ~ Uniform(a,1),a — 1 Gradient Matching
LIME x0 ® &; £(€ {0,1}9) ~ Exponential kernel Squared Error
KernelSHAP xo ® &; (€ {0,1}%) ~ Shapley kernel Squared Error
Occlusion xo ® &; £(€ {0,1}9) ~ Random one-hot vectors Squared Error

Han et. al., 2022 ;4



Why Do Feature Attribution Methods
Disagree?

No Free Lunch Theorem for Explanation Methods: No single
method can perform optimally across all neighborhoods

Theorem 3 (No Free Lunch for Explanation Methods). Consider the scenario where we explain a
black-box model f around point X, using an interpretable model g from class G and a valid loss func-
tion ¢ where the distance between f and G is given by d(f,G) = mingeg maxxex 4(f, g,0,x). Then,
for any explanation g* on a neighborhood distribution {1 ~ Z; such that maxe, £(f,9%,%0,&1) <€
we can always find another neighborhood &5 ~ 25 such that maxe, ¢(f, g*,%0,&2) > d(f,G).
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Which Method Should We Choose?: Take 1

- A guiding principle based on function approximation: choose a
method which recovers the underlying model when the model is
a member of the explanation function class

- For continuous data, use additive continuous noise methods (e.g
SmoothGrad, Vanilla Gradients, C-LIME) or multiplicative
continuous noise methods (e.g. Integrated Gradients, Gradient x
Input). For binary data, use binary noise methods (e.g. LIME,
KernelSHAP, Occlusion).
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Which Method Should We Choose?: Take 2

OpenXAl: open-source framework to readily evaluate and benchmark
post hoc explanation methods

Systematic, efficient, and reproducible evaluations of post hoc
explanation methods on various datasets

- Assessing reliability of post hoc explanation methods from diverse
perspectives (e.g., faithfulness, stability, fairness)

(Customizable) dashboards to compare existing and new methods
across various datasets easily

Agarwal et. al., NeurIPS 2022; OpenXAl: Towards a Transparent Evaluation of Model Explanations; open-xai.github.io 24



Conclusions and Summary

- Several methods proposed to “explain” machine learning models
in prior research

- Important to characterize these methods, and understand which
methods can be useful under what circumstances

- Critical to bridge the gaps between researchers and practitioners
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Thank You!

 Email: hlakkaraju@hbs.edu; hlakkaraju@seas.harvard.edu;

* Webpage: https://himalakkaraju.github.io

* Course on interpretability and explainability: https://interpretable-ml-class.github.io/

* Multiple tutorials on explaining ML models (ranging from 1 hour to 3 hours): explainml-tutorial.github.io

* Trustworthy ML Initiative: https://www.trustworthyml.org/

* Lots of resources and seminar series on topics related to explainability, fairness, adversarial robustness,
differential privacy, causality etc.
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