
n l p

Toward Natural Language Supervision

AAAI 2023

Jacob Andreas

lingo.csail.mit.edu

http://lingo.csail.mit.edu

2

How do we learn?

c

Figure 1: (a) Overall structure of the SAYCam dataset. (b) The classes and the number of frames
in each class in the labeled dataset. (c) Random images from the labeled dataset with the category
labels indicated on the left. Note that the labeled data are a curated subset of the data from child S.

• We develop a novel self-supervised learning objective for learning high-level visual repre-
sentations from video data based on the principle of temporal invariance (Földiák, 1991;
Wiskott and Sejnowski, 2002) and show that this objective yields better representations than
state-of-the-art image-based and temporal contrastive self-supervised learning objectives on
the SAYCam dataset.

• From SAYCam, we curate a large, developmentally realistic dataset of labeled images for
evaluating self-supervised models and analyze the learned visual representations.

3 Dataset

We use the SAYCam dataset (Sullivan et al., 2020) in this study, hosted on the Databrary repository
for behavioral science: https://nyu.databrary.org/. Researchers can apply for access to the
dataset, with approval from their institution’s IRB.

This dataset contains approximately 500 hours of longitudinal egocentric audiovisual data from three
children: 221 hours from child S, 141 hours from child A, and 137 hours from child Y. The data
were collected from head-mounted cameras worn by the children over an approximately two year
period (ages 6-32 months) with a frequency of 1-2 hours of recording per week. Figure 1a illustrates
the overall structure of the dataset. Although the dataset contains both video and audio data, we
only make use of the video component in this paper, as our focus is on studying the development
of high-level visual representations. In future work, it would be interesting to consider the potential

3

from

demonstrations

[Buchsbaum et al. 2010]

from 
observations

from

exploration

from

language

[Legare 2012] [Morgan et al. 2015][Sullivan et al. 2020]

3

picture: a classroom picture: a cookbook

What do we learn from language?

facts procedures language!

m i t
Language in human decision-making

4[Hermer-Vazquez, Spelke, Katznelson 1999]

m i t

5

24%

31%

44%

Language in human decision-making

[Hermer-Vazquez, Spelke, Katznelson 1999]

m i t

6

50%

30%8%

12%

Language in human decision-making

[Hermer-Vazquez, Spelke, Katznelson 1999]

m i t

7

5%

95%0%

0%

Language in human decision-making

[Hermer-Vazquez, Spelke, Katznelson 1999]

m i t

8

38%

43%6%

13%

Language in human decision-making

[Hermer-Vazquez, Spelke, Katznelson 1999]

9

How do machines learn?

c

Figure 1: (a) Overall structure of the SAYCam dataset. (b) The classes and the number of frames
in each class in the labeled dataset. (c) Random images from the labeled dataset with the category
labels indicated on the left. Note that the labeled data are a curated subset of the data from child S.

• We develop a novel self-supervised learning objective for learning high-level visual repre-
sentations from video data based on the principle of temporal invariance (Földiák, 1991;
Wiskott and Sejnowski, 2002) and show that this objective yields better representations than
state-of-the-art image-based and temporal contrastive self-supervised learning objectives on
the SAYCam dataset.

• From SAYCam, we curate a large, developmentally realistic dataset of labeled images for
evaluating self-supervised models and analyze the learned visual representations.

3 Dataset

We use the SAYCam dataset (Sullivan et al., 2020) in this study, hosted on the Databrary repository
for behavioral science: https://nyu.databrary.org/. Researchers can apply for access to the
dataset, with approval from their institution’s IRB.

This dataset contains approximately 500 hours of longitudinal egocentric audiovisual data from three
children: 221 hours from child S, 141 hours from child A, and 137 hours from child Y. The data
were collected from head-mounted cameras worn by the children over an approximately two year
period (ages 6-32 months) with a frequency of 1-2 hours of recording per week. Figure 1a illustrates
the overall structure of the dataset. Although the dataset contains both video and audio data, we
only make use of the video component in this paper, as our focus is on studying the development
of high-level visual representations. In future work, it would be interesting to consider the potential

3

from

demonstrations

[Buchsbaum et al. 2010]

from 
observations

from

exploration

from

language

[Legare 2012] ???

m i t
Today’s talk

Learning to act Learning to program

(f24 5 (λ
(X) (get/set 
(λ (y) (f2 1
(f41 5 y)))

x)) z)

cook an  
egg

turn(90);
pick(pan);

goto(stove);

place(pan)…

Learning to explain

dog faces
& wheels

10

Learning skills from demonstrations 
and instructions

Pratyusha 
Sharma

[Skill Induction & Planning w/ Latent Language. ACL 2022.]

+ Antonio Torralba

https://www.dailymail.co.uk/sciencetech/article-6591753

https://www.dailymail.co.uk/sciencetech/article-6591753

[Shridhar	et	al.	2020]

m i t
Learning to act

put a sliced tomato on the
kitchen counter

turn(left)

14

Can we train a fixed model 
to map goals actions?→

m i t
Learning to act

turn(left)

0% success rate!

15

Can we train a fixed model 
to map goals actions?→put a sliced tomato on the

kitchen counter

m i t
Long horizon tasks

16

put a sliced tomato on the kitchen counter

m i t
Hierarchical policies

17

put the knife in the drawer

turn(left) forward(10) turn(right) open(box) grasp(knife) ...

find(knife) grasp(knife) ...

[Supervised training of sub-policies: Kearns & Singh 02, Kulkarni et al. 16]

[Hand-engineered hierarchies: Parr & Russell, 1998; Andre & Russell, 2002]

[Fully unsupervised: Stolle & Precup 02, Fox & Krishnan et al. 16]

…but existing methods

require lots of domain- 
specific engineering.

Explicitly decomposing tasks into subtasks makes this problem easier…

How can language help?

m i t

put the knife in the drawer

find a knife grab the knife ...

Language Model Planner

19

turn(left) forward(10) turn(right) open(box) grasp(knife) ...

Learned Skill Learned Skill

A hierarchical policy with latent language

m i t

put the knife in the drawer

find a knife grab the knife ...

turn(left) forward(10) turn(right) open(box) grasp(knife) ...

Language Model Planner

20

Learned Skill Learned Skill

Language as a repr. of composable skills

m i t

put the knife in the drawer

find a knife grab the knife ...

turn(left) forward(10) turn(right) open(box) grasp(knife) ...

Language Model Planner

21

Learned Skill Learned Skill

Instructions as a source of easy supervision

m i t

put the knife in the drawer

find a knife grab the knife ...

turn(left) forward(10) turn(right) open(box) grasp(knife) ...

Language Model Planner

22

Learned Skill Learned Skill

Text corpora as priors on plausible plans

How can language help?

Representation of composable skills

Supervision for a planning model 

Generalization to novel goals

m i t

24

put the knife in the drawer

turn(left) forward(10) turn(right) open(box) grasp(knife) ...

Learning to plan and act with language

m i t
Learning to plan and act with language

25

put the knife in the drawer

turn(left) forward(10) turn(right) open(box) grasp(knife) ...

find a knife grab knife go to the drawer ...

?

m i t

26

put the knife in the drawer

turn(left) forward(10) ...

Annotated

demonstrations

Unannotated

demonstrations (x9)

cook the egg

...grasp(egg) forward(9)

Learning to plan and act with language

find a knife grab knife ...

m i t

27

turn(left) forward(10) ...

find a knife grab knife ...

Latent alignments!
Latent plans and 

alignments!

grasp(egg) forward(9) ...

cook the eggput the knife in the drawer

Learning to plan and act with language

m i t

28

turn(left) forward(10) ...

find a knife grab knife ...

Latent alignments!
Latent plans and 

alignments!

grasp(egg) forward(9) ...

find an egg locate stove

cook the eggput the knife in the drawer

Learning to plan and act with language

m i t

29

cook the egg

grasp(egg) forward(9)

(SL)3: Semi-supervised skill learning w/ latent lang.

find an egg locate stove

m i t

+ log pθ

annotated demos

unannotated demos

actionssubtasks alignmentsgoal

argmax
θ

()

subtasks

, , ,

actionsalignmentsgoal(), , ,

alignments

subtasks

(SL)3: Semi-supervised skill learning w/ latent lang.

30

log pθ

m i t

31

alignments

skills

(SL)3: Semi-supervised skill learning w/ latent lang.

m i t

find a knife

turn(left)

grab it

graspforward(10)

32

alignments

skills

(SL)3: Semi-supervised skill learning w/ latent lang.

1. Improve alignments

α = 1 α = 1 α = 2

m i t

33

find a knife

turn(left), forward(10)

grab it

grasp

Looks like inference in an HMM with every
NL string as a possible hidden state!

alignments

skills

(SL)3: Semi-supervised skill learning w/ latent lang.

2. Improve labels

m i t

34

Just gradient descent.

alignments

skills

(SL)3: Semi-supervised skill learning w/ latent lang.

3. Improve parameters

m i t

35

Inferred task decompositions

m i t
End to end success rates

37

(SL)3

10%

ann

HLSM

0

16.5 17.2

[Blukis+

2021]

20.1

FILM
[Min+

2021]

behavior 
cloning

m i t
End to end success rates

38

(SL)3

10%

ann

HLSM

0

16.5 17.2

[Blukis+

2021]

20.1

FILM
[Min+

2021]

behavior 
cloning

m i t
End to end success rates

39

(SL)3

10%

ann

HLSM

0

16.5 17.2

[Blukis+

2021]

20.1

FILM
[Min+

2021]

behavior 
cloning

m i t
End to end success rates

(SL)3

10%

ann

HLSM

0

16.5 17.2

[Blukis+

2021]

20.1

FILM
[Min+

2021]

40

behavior 
cloning

m i t
End to end success rates

behavior 
cloning

(SL)3

10%

ann

HLSM

0

16.5 17.2

[Blukis+

2021]

20.1

FILM
[Min+

2021]

41

HiTUT ET ABP
[Zhang+

2021]
[Pashevich+

2021]
[Kim+

2021]

11.17.3
12.6

m i t
Subtask success rates (excl. navigation)

42

behavior 
cloning

(SL)3

10%

ann

100%

ann

(SL)3

27

56 58

m i t

Mod
[Shridhar+

2020]
[Singh+

2020]

[Corona+

2021]

(SL)3

43

Subtask success rates (excl. navigation)

behavior 
cloning

(SL)3

10%

ann

100%

ann

(SL)3

27

56 58

m i t

44

Subtask success rates (excl. navigation)

behavior 
cloning

(SL)3

10%

ann

100%

ann

(SL)3

27

56 58

m i t

behavior 
cloning

(SL)3

10%

ann

100%

ann

(SL)3

27

56 58

(SL)3

no 
pretrain

45

42

Subtask success rates (excl. navigation)

m i t

behavior 
cloning

(SL)3

10%

ann

100%

ann

(SL)3

27

56 58

(SL)3

no 
pretrain

46

42

Subtask success rates (excl. navigation)

39

seq2seq2seq

[e.g. SayCan]

m i t

47

put the knife in the drawer

find a knife grab it ...

turn(left) forward(10) turn(right) open(box) grasp(knife) ...

Planning with latent language?

m i t
An implicit “library” of reusable skills

48

cook the egg

find a knife

grab a knife

put the egg in the microwave

put the egg in the pan

cook with the microwave

cook using the stove

. . .

π1

π2

π3

π4

π5

π6

m i t
Learning from text corpora

49

ing, conditioning predictions on detailed instructions at test time. In contrast, we target a fully autonomous
setting in which models are trained and tested with goals only. We aim to match the goal completion rate of
instruction following models on the more challenging autonomous task. After implementing the approach
above, we will investigate alternative models of the correspondence between actions and descriptions, in-
cluding deep hierarchies in which subtasks can generate finer-grained subtasks, and closed-loop models in
which subtasks can be modified based on observations. Finally, we will explore inverse reinforcement learn-
ing (predicting reward functions latently optimized by demonstrations using a globally normalized version
of the model [135]). While, in the interest of measurement and reproducibility, our main experiments will
focus on simulation, we plan to deploy these methods on real Baxter robots in collaboration with Prof.
Pulkit Agrawal’s robotics group in final stages of the proposal (see letter of collaboration).

Incorporating background knowledge and user constraints Query Prediction

The color of a banana is [?]. green
I can use a [?] to chop a carrot. knife
I can use a [?] to scrub a carrot. brush
Plates are found in the [?] room. dining
If I drop a glass, it will [?]. explode

Table 1: Predictions from the BERT language model
[43]. The right column shows the word predicted
as the most probable replacement for the [?] token.
While imperfect, these predictions encode informa-
tion about percepts, plans, and social conventions.

Method: The second component of our proposal is the use
of large, text-only datasets as a source of background knowl-
edge that can guide inference on unannotated examples and
during deployment. In the household robotics context, one
particularly useful form of background knowledge is informa-
tion about how environments are configured and how goals
should be accomplished. For example: in a standard house,
where are cups likely to be found? What kind of container
should be used to hold soup? For a sufficiently diverse space
of possible goals, such facts may be too complex and varied to learn from demonstrations alone. How-
ever, as shown in Table 1, current language models already capture a great deal of information about plans
and environments: perceptual properties of named objects, tools needed to accomplish specific tasks, con-
ventional environment layouts, and physical consequences of actions, all expressed as distributions over
strings. The model described above grounds strings in agent observations and actions, unlocking the possi-
bility of using additional text data to improve model generalization.

To do this, we will first apply a posterior regularizer as depicted on the second line of Eq. (1). For W,
we will use the K–L divergence between inferred descriptions and pbackground: W(p1, p2) = DKL(p1 k p2) =
Â` p1(`) log(p1(`)/p2(`)). On unlabeled demonstrations, this regularizer rewards inferred task segmenta-
tions and descriptions that are plausible a priori, and hence likely to be reusable. While exact computation
of the regularizer involves an infinite sum over strings `, it can be efficiently approximated by sampling
from planguage. Second, we can modify the test-time behavior of the model by sampling from a penalized
decoding objective:

p̃(u | x, g) µ Â
t

p(u | t)p(t | g) + W(planguage(· | t, l), pbackground) (3)

In the household scenario, penalized decoding of this kind will produce the behavior depicted in Fig. 2,
preventing an agent from placing a dirty dish in a refrigerator by inferring that the associated annotation
is improbable. pbackground can also be modified to incorporate other sources of information about test-time
behavior, including user-provided hints or constraints that do not specify full plans. For example, a user
might want the automated agent to avoid a living room in which children are playing, which can be done
by directly downweighting the probability pbackground assigns to the substring living room.

Preliminary experiment: To validate this approach, we trained a simplified version of this model to per-
form household tasks in ALFRED. In the simplified model, subtask representations took the form of natural
language strings rather than neural embeddings, with planguage equal to the identity function. pbackground
was used only at training time. We implemented pplan and paction as transformers [118] and used a pre-
trained BART model for pbackground [75]. The ALFRED training set consists of 8,055 demonstrations; we an-
notated 400 with human instructions, then inferred parameters, alignments, and the remaining instructions.
Individual instructions varied greatly in form and specificity, ranging from goals (Find the tomato) to con-
textualized action sequences (Pick up the nail polish, on the white shelf, behind the tissue box). An example of an

7

[Devlin et al. NAACL 2019]

m i t

put the knife in the drawer

find a knife grab it ...

turn(left) forward(10) turn(right) open(box) grasp(knife) ...

Language Model Planner

50

Learned Skill Learned Skill

A hierarchical policy with latent language

m i t

51

Approach: learning from text corpora

Figure 5: Successes and failures of ⇡
C in out-of-distribution (OOD) settings including novel (a) sub-task orders (b)

objects (c) verbs. The use of a pretrained LM as the backbone of the planning model means that models produce
correct or plausible plans for many of these out-of-distribution goals. (d) Other failure modes: The model fails to
predict actions based on the true affordances of objects and cannot generate arbitrarily long plans.

intersection of language and control include
instruction following (Chen and Mooney, 2011;
Branavan et al., 2009; Tellex et al., 2011; Anderson
et al., 2018; Misra et al., 2017), embodied question
answering (Das et al., 2018; Gordon et al., 2018)
and dialog tasks (Tellex et al., 2020). As in our
work, representations of language learned from
large text corpora facilitate grounded language
learning (Shridhar et al., 2021), and interaction
with the environment can in turn improve the
accuracy of language generation (Zellers et al.,
2021); future work might extend our framework
for semi-supervised inference of plan descriptions
to these settings as well.

7 Conclusion

We have presented (SL)3, a framework for learning
hierarchical policies from demonstrations sparsely
annotated with natural language descriptions. Us-
ing these annotations, (SL)3 infers the latent struc-
ture of unannotated demonstrations, automatically

segmenting them into subtasks and labeling each
subtask with a compositional description. Learn-
ing yields a hierarchical policy in which natural
language serves as an abstract representation of
subgoals and plans: a controller sub-policy maps
from goals to natural language plan specifications,
and a modular executor that maps each compo-
nent of the plan to a sequence of low-level actions.
In simulated household environments, this model
can complete abstract goals (like slice a tomato)
with accuracy comparable to state-of-the-art mod-
els trained and evaluated with fine-grained plans
(find a knife, carry the knife to the tomato, . . .).

While our evaluation has focused on household
robotics tasks, the hierarchical structure inferred by
(SL)3 is present in a variety of learning problems,
including image understanding, program synthesis,
and language generation. In all those domains, gen-
eralized versions of (SL)3 might offer a framework
for building high-quality models using only a small
amount of rich natural language supervision.

Figure 5: Successes and failures of ⇡
C in out-of-distribution (OOD) settings including novel (a) sub-task orders (b)

objects (c) verbs. The use of a pretrained LM as the backbone of the planning model means that models produce
correct or plausible plans for many of these out-of-distribution goals. (d) Other failure modes: The model fails to
predict actions based on the true affordances of objects and cannot generate arbitrarily long plans.

intersection of language and control include
instruction following (Chen and Mooney, 2011;
Branavan et al., 2009; Tellex et al., 2011; Anderson
et al., 2018; Misra et al., 2017), embodied question
answering (Das et al., 2018; Gordon et al., 2018)
and dialog tasks (Tellex et al., 2020). As in our
work, representations of language learned from
large text corpora facilitate grounded language
learning (Shridhar et al., 2021), and interaction
with the environment can in turn improve the
accuracy of language generation (Zellers et al.,
2021); future work might extend our framework
for semi-supervised inference of plan descriptions
to these settings as well.

7 Conclusion

We have presented (SL)3, a framework for learning
hierarchical policies from demonstrations sparsely
annotated with natural language descriptions. Us-
ing these annotations, (SL)3 infers the latent struc-
ture of unannotated demonstrations, automatically

segmenting them into subtasks and labeling each
subtask with a compositional description. Learn-
ing yields a hierarchical policy in which natural
language serves as an abstract representation of
subgoals and plans: a controller sub-policy maps
from goals to natural language plan specifications,
and a modular executor that maps each compo-
nent of the plan to a sequence of low-level actions.
In simulated household environments, this model
can complete abstract goals (like slice a tomato)
with accuracy comparable to state-of-the-art mod-
els trained and evaluated with fine-grained plans
(find a knife, carry the knife to the tomato, . . .).

While our evaluation has focused on household
robotics tasks, the hierarchical structure inferred by
(SL)3 is present in a variety of learning problems,
including image understanding, program synthesis,
and language generation. In all those domains, gen-
eralized versions of (SL)3 might offer a framework
for building high-quality models using only a small
amount of rich natural language supervision.

Learning skills: summary

What: Hierarchical policy learning from demonstrations with
(sparse) natural language supervision.

How:
Automatic “parsing” of annotated & unannotated demos
with dynamic programs for alignment and 
inference of string-valued latent variables.

Why:
Instructions are easy to collect; training with <1k of them
gives performance comparable to state-of-the-art models
evaluated with ground truth plans.

Learning functions from denotations

and descriptions

Lio 
Wong

[Leveraging Language for Program Search and Abstraction Learning. ICML 2021.]

+ Josh Tenenbaum

m i t
Inferring programs from specifications

54

cooked(egg)

grasp(egg) forward(9)

previously: now:

(f24 5 (λ (X) (get/set (λ (y)
(f2 1 (f41 5 y))) x)) z)

Predict a program to execute 
given a high-level goal.

Infer a program given the 
results of execution.

m i t

(f24 5 (λ (X) (get/set (λ (y)
(f2 1 (f41 5 y))) x)) z)s/Figure/Fig./g

Figure 1 Fig. 1→
as in Figure 6a as in Fig. 6a→

a striking figure a striking figure→

55

Many learning problems are naturally formulated as program synthesis.

Inferring programs from specifications

m i t
Language & program abstractions

56

f1(8,

 f2(7, 1cm))

f1(5,

 f2(5, 2cm))

for i in range(8):

 for j in range(7):

 pendown()

 forward(1cm)

 penup()

 rotate(129)

 rotate(45)

for i in range(5):

 for j in range(5):

 pendown()

 forward(2cm)

 penup()

 rotate(108)

 rotate(72)

Programs are compositional.

m i t

57

pinwheel(8,

 gon(7, 1cm))

pinwheel(5,

 gon(5, 2cm))

a pinwheel made
of 8 heptagons

a pinwheel made
of 5 pentagons

Programs are compositional. This compositional structure is reflected in language!

pick up a knife, find a tomato, then  
go to the counter and slice it

find_knife

find_tomato

goto_counter

slice

Language & program abstractions

m i t

a pinwheel made of 5 pentagons

for i in range(5):

 for j in range(5):

 pendown()

 forward(2cm)

 penup()

 rotate(72)

 rotate(72)

58

find a knife

turn(left)

grab it

graspforward(10)

Can we use language to learn
from denotations the same
way we used it to learn with full
supervision?

Language & program abstractions

m i t

find a knife

turn(left)

grab it

graspforward(10)

a pinwheel made of 5 pentagons

for i in range(5):

 for j in range(5):

 pendown()

 forward(2cm)

 penup()

 rotate(72)

 rotate(72)

59

Can we use language to learn
from denotations the same
way we used it to learn with full
supervision?

Key challenge: we need to infer
programs along with all the
other latent vars!

Language & program abstractions

m i t

60

lambda x, f:

 for i in range(x):

 f()

 rotate(360/x)

a pinwheel made of

Program generator

Execution model

annotation

alignment

program

output

LAPS: lang. for abstraction & program search

m i t
An explicit library of reusable functions

61

Generative model of programs

Leveraging Language to Learn Program Abstractions and Search Heuristics

A. String Editing (shown with sample I/O examples of n=30 and random human description of n=3)

pavings → pavinb
forgiveness → forgiveneb
enterprises → enterprises

if the word ends with consonant s
replace that with b

if the word ends with a consonant
and s then change them both to b

cools → gcools
cultivator → gcultivator
bloomed → bloomed

(Synth) if the word starts with
consonant vowel add g before that

(Human) if word begins with
consonant followed by vowel , add
an g to the beginning

topazes -> topaz
suburbs -> suburbs
reckless -> reckls

if there is e s remove that

remove the e s from the word

shouldering -> shoululdering
hath -> hath
outrun -> oututrunun

if there is u any letter double that

the next letter with the letter u should be
repeated as a pair for this transformation

C. Compositional Graphics (shown with random human description of n=3)

Simple shapes Complex objects Compositional objects and relations

a small triangle
small triangle

a medium square
one medium square

a medium eight gon
octogon

a big circle
just a circle

a seven pointed star
a seven sided snowflake with
long triangles as arms

a four stepped zigzag
four step ladder going from
top to bottom

a greek spiral with eight turns
a long line that curls in on
itself at right angles

a small five gon next to a
small seven gon
a five sided gon beside a
seven sided gon

a small nine gon separated
by a big space from a small
circle
nine gon on left with small
circle on right not connected

a small triangle connected by a
big line to a medium triangle
a small triangle with a long line
and a medium triangle

six small five gons in a row
six overlapped pentagons
going left to right

seven sided snowflake with a
short space and a short line
and a short space and a
small triangle as arms
a seven sided snowflake with
seven triangles and line

four nested squares
four stacked squares

B. Scene Reasoning (shown with sample I/O examples of n=7 and random human description of n=2)

Original CLEVR (sample templates from full set) Extended scene manipulation and counterfactuals

What number of gray rubber cubes are there?

how many grey rubber cubes do you see

2

1

2

There is another thing that is the same
color as the large rubber thing; what is it
made of?
what material is the other object that is
the same color as the large rubber object

metal

rubber

metal

What if the gray sphere became a small
green metal sphere?

what if the grey ball morphed into a small
green ball

If you removed the red things, how many
spheres would be left?

count the spheres would be left after
removing the red things

3

3

0

a small semicircle
(f19 (f9 0 x))

a medium semicircle
(f3 (f9 0 x))

a big semicircle
(f9 (* (/ ε 1) 5) x)

f0=(λ (x y z) (for x (λ
(u v) (move z y v))))

1

. . .

for

pen-up

f4=(λ (x y z) (f0 x (/ 2π
y) 1 z))

f5=(λ (x y) (f4 x x y))

0.27 | gon
0.22 | small

f9=(f0 ∞ ε)

0.09 | small

0.07 | semicircle

f24=(λ (x y) (f23 (λ (z u)
(f21 y 0 x u))))

f17=(λ (x) (pen-up (λ (y)
(f16 x y))))

0.67 | separated
0.06 | space

0.09 | snowflake
0.09 | arms

D. Example initial
graphics primitives

shown with learned high probability p(word | primitive)

...

...

a small five gon
(f5 5 x)

a small nine gon
(f5 9 x)

a medium seven gon
(f5 2 (f20 7 x))

eight sided snowflake with a
small seven gon as arms
(f24 7 8 x)

five sided snowflake with a short line
and a medium five gon as arms
(f24 5 (λ (x) (get/set (λ (y)
(f2 1 (f41 5 y)))x)) z)

....and example program abstractions learned with language

rotates and draws a
unit line

lift pen between
consecutive shapes

rotational symmetry by
number of sides

move pen in
parameterized loop

smooth curve rotate shapes
around axis

move

2

+

-

Figure 2. (A, B, C) Example tasks from all three synthesis domains shown with synthetic and sample human language annotations.

Inductive synthesis domains are shown with a random subset (n=3) of the paired input/output examples. Human language annotations

are also randomly sampled (all domains were annotated by multiple people for a broader range of language.) (D) Representative

initial program primitives and library abstractions learned with LAPS for the graphics domain. Shown with example tasks solved with

synthesized programs containing the learned abstractions and high probability natural language learned from the joint model.

composes functions from a library of 
program fragments given words

lambda x, f:

 for i in range(x):

 f()

 rotate(360/x)

a pinwheel made of

Program generator

Execution model

m i t
LAPS: lang. for abstraction & program search

62

Segmentation  
max

α̂

Program search

max

̂π

Library learning
max

̂θ

lambda x, f:

 for i in range(x):

 f()

 rotate(360/x)

a pinwheel made of

Program generator

Execution model

annotation

alignment

program

output
alignmentsprogram

LAPS

library fns

m i t
Growing the library and the set of solved programs

63

Segmentation  
max

α̂

Program search

max

̂π

Param update
max

̂θlibrary fns

program alignments

a small square a medium square 4 nested squares

[c.f. Ellis et al. 21, DreamCoder.]

m i t

64

for i in range(4):

 pendown()

 forward(1)

 penup()

 rotate(90)

a small square a medium square

Segmentation  
max

α̂

Program search

max

̂π

Param update
max

̂θlibrary fns

program alignments

Growing the library and the set of solved programs

4 nested squares

[c.f. Ellis et al. 21, DreamCoder.]

m i t

65

for i in range(4):

 pendown()

 forward(1)

 penup()

 rotate(90)

a small square a medium square

Segmentation  
max

α̂

Program search

max

̂π

Param update
max

̂θlibrary fns

program alignments

Growing the library and the set of solved programs

4 nested squares

[c.f. Ellis et al. 21, DreamCoder.]

m i t

66

fn0(

 lambda: ( 
 pendown(); 
 forward(1); 
 penup()

))

a small square a medium square

Segmentation  
max

α̂

Program search

max

̂π

Param update
max

̂θlibrary fns

program alignments

def fn0(fn):

 for i in range(4):

 fn() 
 rotate(90)

Growing the library and the set of solved programs

square

4 nested squares

[c.f. Ellis et al. 21, DreamCoder.]

m i t

67

a small square a medium square

Segmentation  
max

α̂

Program search

max

̂π

Param update
max

̂θlibrary fns

program alignments

fn0(

 lambda: ( 
 pendown(); 
 forward(1); 
 penup()

))

def fn0(fn):

 for i in range(4):

 fn() 
 rotate(90)

fn0(

 lambda: ( 
 pendown(); 
 forward(2); 
 penup()

))

Growing the library and the set of solved programs

square

4 nested squares

[c.f. Ellis et al. 21, DreamCoder.]

m i t

68

a small square a medium square

Segmentation  
max

α̂

Program search

max

̂π

Param update
max

̂θlibrary fns

program alignments

square(fn1(1))

def fn0(fn):

 for i in range(4):

 fn() 
 rotate(90)

square(fn1(2))

def fn1(x):

 pendown()

 forward(x)

 penup()

Growing the library and the set of solved programs

square

4 nested squares

[c.f. Ellis et al. 21, DreamCoder.]

m i t
Data: inverse graphics

69

Leveraging Language to Learn Program Abstractions and Search Heuristics

A. String Editing (shown with sample I/O examples of n=30 and random human description of n=3)

pavings → pavinb
forgiveness → forgiveneb
enterprises → enterprises

if the word ends with consonant s
replace that with b

if the word ends with a consonant
and s then change them both to b

cools → gcools
cultivator → gcultivator
bloomed → bloomed

(Synth) if the word starts with
consonant vowel add g before that

(Human) if word begins with
consonant followed by vowel , add
an g to the beginning

topazes -> topaz
suburbs -> suburbs
reckless -> reckls

if there is e s remove that

remove the e s from the word

shouldering -> shoululdering
hath -> hath
outrun -> oututrunun

if there is u any letter double that

the next letter with the letter u should be
repeated as a pair for this transformation

C. Compositional Graphics (shown with random human description of n=3)

Simple shapes Complex objects Compositional objects and relations

a small triangle
small triangle

a medium square
one medium square

a medium eight gon
octogon

a big circle
just a circle

a seven pointed star
a seven sided snowflake with
long triangles as arms

a four stepped zigzag
four step ladder going from
top to bottom

a greek spiral with eight turns
a long line that curls in on
itself at right angles

a small five gon next to a
small seven gon
a five sided gon beside a
seven sided gon

a small nine gon separated
by a big space from a small
circle
nine gon on left with small
circle on right not connected

a small triangle connected by a
big line to a medium triangle
a small triangle with a long line
and a medium triangle

six small five gons in a row
six overlapped pentagons
going left to right

seven sided snowflake with a
short space and a short line
and a short space and a
small triangle as arms
a seven sided snowflake with
seven triangles and line

four nested squares
four stacked squares

B. Scene Reasoning (shown with sample I/O examples of n=7 and random human description of n=2)

Original CLEVR (sample templates from full set) Extended scene manipulation and counterfactuals

What number of gray rubber cubes are there?

how many grey rubber cubes do you see

2

1

2

There is another thing that is the same
color as the large rubber thing; what is it
made of?
what material is the other object that is
the same color as the large rubber object

metal

rubber

metal

What if the gray sphere became a small
green metal sphere?

what if the grey ball morphed into a small
green ball

If you removed the red things, how many
spheres would be left?

count the spheres would be left after
removing the red things

3

3

0

a small semicircle
(f19 (f9 0 x))

a medium semicircle
(f3 (f9 0 x))

a big semicircle
(f9 (* (/ ε 1) 5) x)

f0=(λ (x y z) (for x (λ
(u v) (move z y v))))

1

. . .

for

pen-up

f4=(λ (x y z) (f0 x (/ 2π
y) 1 z))

f5=(λ (x y) (f4 x x y))

0.27 | gon
0.22 | small

f9=(f0 ∞ ε)

0.09 | small

0.07 | semicircle

f24=(λ (x y) (f23 (λ (z u)
(f21 y 0 x u))))

f17=(λ (x) (pen-up (λ (y)
(f16 x y))))

0.67 | separated
0.06 | space

0.09 | snowflake
0.09 | arms

D. Example initial
graphics primitives

shown with learned high probability p(word | primitive)

...

...

a small five gon
(f5 5 x)

a small nine gon
(f5 9 x)

a medium seven gon
(f5 2 (f20 7 x))

eight sided snowflake with a
small seven gon as arms
(f24 7 8 x)

five sided snowflake with a short line
and a medium five gon as arms
(f24 5 (λ (x) (get/set (λ (y)
(f2 1 (f41 5 y)))x)) z)

....and example program abstractions learned with language

rotates and draws a
unit line

lift pen between
consecutive shapes

rotational symmetry by
number of sides

move pen in
parameterized loop

smooth curve rotate shapes
around axis

move

2

+

-

Figure 2. (A, B, C) Example tasks from all three synthesis domains shown with synthetic and sample human language annotations.
Inductive synthesis domains are shown with a random subset (n=3) of the paired input/output examples. Human language annotations
are also randomly sampled (all domains were annotated by multiple people for a broader range of language.) (D) Representative
initial program primitives and library abstractions learned with LAPS for the graphics domain. Shown with example tasks solved with
synthesized programs containing the learned abstractions and high probability natural language learned from the joint model.

200 training images:

m i t
Results: inverse graphics

70

Leveraging Language to Learn Program Abstractions and Search Heuristics

A. String Editing (shown with sample I/O examples of n=30 and random human description of n=3)

pavings → pavinb
forgiveness → forgiveneb
enterprises → enterprises

if the word ends with consonant s
replace that with b

if the word ends with a consonant
and s then change them both to b

cools → gcools
cultivator → gcultivator
bloomed → bloomed

(Synth) if the word starts with
consonant vowel add g before that

(Human) if word begins with
consonant followed by vowel , add
an g to the beginning

topazes -> topaz
suburbs -> suburbs
reckless -> reckls

if there is e s remove that

remove the e s from the word

shouldering -> shoululdering
hath -> hath
outrun -> oututrunun

if there is u any letter double that

the next letter with the letter u should be
repeated as a pair for this transformation

C. Compositional Graphics (shown with random human description of n=3)

Simple shapes Complex objects Compositional objects and relations

a small triangle
small triangle

a medium square
one medium square

a medium eight gon
octogon

a big circle
just a circle

a seven pointed star
a seven sided snowflake with
long triangles as arms

a four stepped zigzag
four step ladder going from
top to bottom

a greek spiral with eight turns
a long line that curls in on
itself at right angles

a small five gon next to a
small seven gon
a five sided gon beside a
seven sided gon

a small nine gon separated
by a big space from a small
circle
nine gon on left with small
circle on right not connected

a small triangle connected by a
big line to a medium triangle
a small triangle with a long line
and a medium triangle

six small five gons in a row
six overlapped pentagons
going left to right

seven sided snowflake with a
short space and a short line
and a short space and a
small triangle as arms
a seven sided snowflake with
seven triangles and line

four nested squares
four stacked squares

B. Scene Reasoning (shown with sample I/O examples of n=7 and random human description of n=2)

Original CLEVR (sample templates from full set) Extended scene manipulation and counterfactuals

What number of gray rubber cubes are there?

how many grey rubber cubes do you see

2

1

2

There is another thing that is the same
color as the large rubber thing; what is it
made of?
what material is the other object that is
the same color as the large rubber object

metal

rubber

metal

What if the gray sphere became a small
green metal sphere?

what if the grey ball morphed into a small
green ball

If you removed the red things, how many
spheres would be left?

count the spheres would be left after
removing the red things

3

3

0

a small semicircle
(f19 (f9 0 x))

a medium semicircle
(f3 (f9 0 x))

a big semicircle
(f9 (* (/ ε 1) 5) x)

f0=(λ (x y z) (for x (λ
(u v) (move z y v))))

1

. . .

for

pen-up

f4=(λ (x y z) (f0 x (/ 2π
y) 1 z))

f5=(λ (x y) (f4 x x y))

0.27 | gon
0.22 | small

f9=(f0 ∞ ε)

0.09 | small

0.07 | semicircle

f24=(λ (x y) (f23 (λ (z u)
(f21 y 0 x u))))

f17=(λ (x) (pen-up (λ (y)
(f16 x y))))

0.67 | separated
0.06 | space

0.09 | snowflake
0.09 | arms

D. Example initial
graphics primitives

shown with learned high probability p(word | primitive)

...

...

a small five gon
(f5 5 x)

a small nine gon
(f5 9 x)

a medium seven gon
(f5 2 (f20 7 x))

eight sided snowflake with a
small seven gon as arms
(f24 7 8 x)

five sided snowflake with a short line
and a medium five gon as arms
(f24 5 (λ (x) (get/set (λ (y)
(f2 1 (f41 5 y)))x)) z)

....and example program abstractions learned with language

rotates and draws a
unit line

lift pen between
consecutive shapes

rotational symmetry by
number of sides

move pen in
parameterized loop

smooth curve rotate shapes
around axis

move

2

+

-

Figure 2. (A, B, C) Example tasks from all three synthesis domains shown with synthetic and sample human language annotations.
Inductive synthesis domains are shown with a random subset (n=3) of the paired input/output examples. Human language annotations
are also randomly sampled (all domains were annotated by multiple people for a broader range of language.) (D) Representative
initial program primitives and library abstractions learned with LAPS for the graphics domain. Shown with example tasks solved with
synthesized programs containing the learned abstractions and high probability natural language learned from the joint model.

Leveraging Language to Learn Program Abstractions and Search Heuristics

Table 1. % held-out test-tasks solved. To compare robustness, we run random seed replications in the graphics domain for the synthetic
language dataset. Best reports the best model across replications; Mean averages across replications.
Language Model Strings (ntest = 500) Graphics (ntest = 111) Scenes (ntest = 115)

% Solved % Solved (Best) % Solved (Mean) % Solved (Curric.) % Solved (Mean.)

Synth train/test DreamCoder (no language) 33.4 49.55 42. 64 67.80 73.9
Synth train/test Multimodal (no generative translation model) 46.00 26.12 23.20 76.50 49.5

Synth train/test LAPS in neural search 52.20 92.79 52.93 95.6 88.1
Synth train/test LAPS + mutual exclusivity 57.00 86.49 80.18 96.5 82.3
Synth train/test LAPS + ME + language-program compression 54.60 98.19 81.98 95.6 95.9
Synth train/human test LAPS + ME + language-program compression 54.60 89.20 – 97.4 –
Human train/human test LAPS + ME + language-program compression 48.60 58.55 – 95.6 –

No language at test
No language on train/test Original DSL; Enumerative 0.06 0.00 – 27.8 –
No language on train/test DreamCoder (best library): Enumerative 27.2 41.44 – 53.6 –
No lang at test LAPS (best library): Enumerative 33.2 62.16 – 93.04 –
No lang at test LAPS (best library): example-only neural synthesis 52.4 91.0 – 95.6 –

LAPS + ME + lang. compression

%
 S

ol
ve

d
(0

 –
10

0%
)

Learning Iterations (0 – 27)

DreamCoder (no language) LAPS + mutual exclusivityLAPS in neural searchMultimodal (no generative)

Figure 3. Learning curves comparing baselines and LAPS models in Table 1, showing % heldout tasks solved on the graphics domain
over random training task orderings. (Mean results in Table 1 shows average test-time performance from the trained model replications.)

subroutines encountered in training generalize well to new
tasks. Adding poor abstractions can actually be detrimen-
tal: they increase the combinatorial search space. We find
that our approach produces higher-quality libraries after
training: Table 1 (no language at test time section) shows
that we consistently improve performance in a head-to-head
comparison using enumerative search from the library pri-
ors alone – in some domains, enumerative search with our
model’s library outperforms neurally guided search from
the baseline model. We also find the learned library is
effective for neurally-guided synthesis when no language
hints are available after training (Table 1, no language at
test, example-guided synthesis), showing that LAPS in-
corporates language to learn a more effective library overall,
which generalizes to the non-language setting. See supple-
ment for example learned abstractions from Lf .

(3) LAPS can use language during testing if it is avail-
able, though it doesn’t need to for competitive performance.
Clearly, language can provide a useful source of high-level
information if it is available for new tasks. Our approach
produces a neural synthesizer pre-trained to condition on
language where available. Results on all three domains show
that the model can use it to achieve additional performance
gains (Table 1, see language at test rows). We also find that
the models trained on synthetic annotations generalize effec-
tively to natural human language at test (Table 1, synth train,
human test), suggesting that even if human annotation is too
costly, in many cases hand-writing natural language tem-
plates to accompany a few ground-truth programs is likely
sufficient (and easier than hand designing a full DSL).

7. Conclusion
We presented Language for Abstraction and Program
Search (LAPS). LAPS builds on hierarchical Bayesian mod-
els of program learning: we offer a general framework for
introducing jointly generative models over programs and
language into learned synthesis. Going forwards, an impor-
tant avenue for future work will be exploring different con-
crete implementations of the base algorithm and translation
model which relates programs to language. A promising fu-
ture direction could leverage recent structured, neural joint
models that can learn the compositional units of language,
and incorporate pre-trained language representations (Joshi
& Schabes, 1997; Wiseman et al., 2018; Kim et al., 2019).

The hierarchical Bayesian framing also draws connections
to computational cognitive models which model human con-
ceptual representations and learning (Goodman et al., 2014;
Fodor, 1975; Rule, 2020) as inference over program-like
representations. Future human experiments could explore
LAPS as a cognitive model, combining paradigms for study-
ing language learning with those for studying non-linguistic
abstraction and search (e.g. Smith et al. 2003; Hawkins et al.
2019; Lake et al. 2015; 2019; Tian et al. 2020).

Acknowledgements: Many thanks to M. Nye, J. Mu, A. Mar-
zoev, J. Fan, R. Hawkins, R. Levy, L. Schulz and our anonymous
reviewers for invaluable feedback. Supported by grants from the
Air Force Office of Scientific Research, the NSF under Grant No.
1918839 and NSF-funded Center for Brains, Minds, and Machines,
the MIT-IBM Watson AI Lab, Google, Microsoft and Amazon.

Leveraging Language to Learn Program Abstractions and Search Heuristics

Table 1. % held-out test-tasks solved. To compare robustness, we run random seed replications in the graphics domain for the synthetic
language dataset. Best reports the best model across replications; Mean averages across replications.
Language Model Strings (ntest = 500) Graphics (ntest = 111) Scenes (ntest = 115)

% Solved % Solved (Best) % Solved (Mean) % Solved (Curric.) % Solved (Mean.)

Synth train/test DreamCoder (no language) 33.4 49.55 42. 64 67.80 73.9
Synth train/test Multimodal (no generative translation model) 46.00 26.12 23.20 76.50 49.5

Synth train/test LAPS in neural search 52.20 92.79 52.93 95.6 88.1
Synth train/test LAPS + mutual exclusivity 57.00 86.49 80.18 96.5 82.3
Synth train/test LAPS + ME + language-program compression 54.60 98.19 81.98 95.6 95.9
Synth train/human test LAPS + ME + language-program compression 54.60 89.20 – 97.4 –
Human train/human test LAPS + ME + language-program compression 48.60 58.55 – 95.6 –

No language at test
No language on train/test Original DSL; Enumerative 0.06 0.00 – 27.8 –
No language on train/test DreamCoder (best library): Enumerative 27.2 41.44 – 53.6 –
No lang at test LAPS (best library): Enumerative 33.2 62.16 – 93.04 –
No lang at test LAPS (best library): example-only neural synthesis 52.4 91.0 – 95.6 –

LAPS + ME + lang. compression

%
 S

ol
ve

d
(0

 –
10

0%
)

Learning Iterations (0 – 27)

DreamCoder (no language) LAPS + mutual exclusivityLAPS in neural searchMultimodal (no generative)

Figure 3. Learning curves comparing baselines and LAPS models in Table 1, showing % heldout tasks solved on the graphics domain
over random training task orderings. (Mean results in Table 1 shows average test-time performance from the trained model replications.)

subroutines encountered in training generalize well to new
tasks. Adding poor abstractions can actually be detrimen-
tal: they increase the combinatorial search space. We find
that our approach produces higher-quality libraries after
training: Table 1 (no language at test time section) shows
that we consistently improve performance in a head-to-head
comparison using enumerative search from the library pri-
ors alone – in some domains, enumerative search with our
model’s library outperforms neurally guided search from
the baseline model. We also find the learned library is
effective for neurally-guided synthesis when no language
hints are available after training (Table 1, no language at
test, example-guided synthesis), showing that LAPS in-
corporates language to learn a more effective library overall,
which generalizes to the non-language setting. See supple-
ment for example learned abstractions from Lf .

(3) LAPS can use language during testing if it is avail-
able, though it doesn’t need to for competitive performance.
Clearly, language can provide a useful source of high-level
information if it is available for new tasks. Our approach
produces a neural synthesizer pre-trained to condition on
language where available. Results on all three domains show
that the model can use it to achieve additional performance
gains (Table 1, see language at test rows). We also find that
the models trained on synthetic annotations generalize effec-
tively to natural human language at test (Table 1, synth train,
human test), suggesting that even if human annotation is too
costly, in many cases hand-writing natural language tem-
plates to accompany a few ground-truth programs is likely
sufficient (and easier than hand designing a full DSL).

7. Conclusion
We presented Language for Abstraction and Program
Search (LAPS). LAPS builds on hierarchical Bayesian mod-
els of program learning: we offer a general framework for
introducing jointly generative models over programs and
language into learned synthesis. Going forwards, an impor-
tant avenue for future work will be exploring different con-
crete implementations of the base algorithm and translation
model which relates programs to language. A promising fu-
ture direction could leverage recent structured, neural joint
models that can learn the compositional units of language,
and incorporate pre-trained language representations (Joshi
& Schabes, 1997; Wiseman et al., 2018; Kim et al., 2019).

The hierarchical Bayesian framing also draws connections
to computational cognitive models which model human con-
ceptual representations and learning (Goodman et al., 2014;
Fodor, 1975; Rule, 2020) as inference over program-like
representations. Future human experiments could explore
LAPS as a cognitive model, combining paradigms for study-
ing language learning with those for studying non-linguistic
abstraction and search (e.g. Smith et al. 2003; Hawkins et al.
2019; Lake et al. 2015; 2019; Tian et al. 2020).

Acknowledgements: Many thanks to M. Nye, J. Mu, A. Mar-
zoev, J. Fan, R. Hawkins, R. Levy, L. Schulz and our anonymous
reviewers for invaluable feedback. Supported by grants from the
Air Force Office of Scientific Research, the NSF under Grant No.
1918839 and NSF-funded Center for Brains, Minds, and Machines,
the MIT-IBM Watson AI Lab, Google, Microsoft and Amazon.

m i t
Language guides discovery of program abstractions

Supplemental: Leveraging Language to Learn Program Search Heuristics and Abstractions

⍴"

L, $

%&

'̂

T

Execute to
produce
examples

Sample
programs
from prior

Translate to
produce
language

Joint generative model from
learned translation model T

a small square
connected by a short
line and a small
triangle as arms

Joint model samples : Iteration 3

a small five gons
a small five gon gon
a small five gon and

a small five gon
a small six gon
a medium five gon

Joint model samples : Iteration 15

small 5 gons in
a row

a small 6 gon
as arms

a small square
short line

3 small 5 gon
and a small
triangle(f41 (λ (x)

((f48 x)) (fn21
1 5 5 x))

(f34 9 6 x)
(f17 (λ (x)
(get/set (λ (z)
(f12 1 (f24 (x
z))))(f20 (λ (u)
(f15 5 u)) 1 3 3)))
v)

((f10 3 x) f34
(f31 (λ (x) x)
(λ (y z) z)) 4
9 u))

'̂ =

%& =

)" =
(f6 4 4 1 x)

(f0 5 0 1 x) (f1 1 (f2 5 x))

Figure 3. (left) Joint generative model J over programs sampled from the DSL prior and natural language produced by the translation
model T (D|L), inferred from solved training tasks. Samples from the model are used to train a neural synthesizer to guide search on
more challenging, unsolved tasks. (right) Samples from the J generative model in the graphics domain shows how program complexity
increases and generated language improves across iterations, as the system both adds richer abstractions to the DSL and learns better
alignments over the solution set, enabling the trained neural model to solve more complex tasks

.

1

0.91 | three
0.98 | triangle

. . .

for

move

pen-up

0.94 | four
0.89 | square

Original DSL primitives

Learned translation
probabilities p(π | u)

0.31 | line
0.31 | short
0.09 | a

3

4

2

New primitives added through abstraction learning

f0=(λ (x y z) (for x (λ
(u v) (move z y v))))

move pen in
parameterized
loop f9=(f0 ∞ ε)

0.07 | semicircle

a small semicircle
(f19 (f9 0 x))

a medium semicircle
(f3 (f9 0 x))

a big semicircle
(f9 (* (/ ε 1) 5) x)

f14=(λ (x y) (for 7 (λ (z
u) (f9 x u)) y))

a big circle
(f14 (logo_DIVL 1 4) x)

a small circle
(f14 (logo_DIVL ε 1) x)

two nested circles
(f14 ε (f14 ε (f16 x)))

0.16 | circle
0.08 | turns
0.09 | nested

f4=(λ (x y z) (f0 x (/ 2π
y) 1 z))

0.09 | small rotates and draws a
unit line

f5=(λ (x y) (f4 x x y))

0.27 | gon
0.22 | small

rotational
symmetry by
number of sides

a small five gon
(f5 5 x)

a small nine gon
(f5 9 x)

a medium seven gon
(f5 2 (f20 7 x))

f6=(λ (x y z u) (for y (λ
(v w) (f5 z (f5 x w))) u))

four small squares in a row
(f5 2 (f6 1 4 4 x))

six small five gons in a row
(f6 1 6 5 x)

... f24=(λ (x y) (f23 (λ (z
u) (f21 y 0 x u))))

0.09 | snowflake
0.09 | arms

eight sided snowflake with a
small seven gon as arms
(f24 7 8 x)

five sided snowflake with a
short line and a medium five
gon as arms
(f24 5 (λ (x) (get/set
(λ (y) (f2 1 (f41 5 y)))
x)) z)

f32=(λ (x) (for x (λ (y
z) (move 1 (/ 2π 4) (move 1
(- 2π (/ 2π 4)) z)))))

1.0 | stepped
0.64 | staircase
0.36 | zigzag

a seven stepped staircase
(f32 7 (get/set (λ (x) x) y))

a four stepped staircase
(f32 4 (get/set (λ (x) x) y))

a five stepped zigzag
(f25 (λ (x) x) 3 8 (f32 5 y)

...

...f17=(λ (x) (pen-up (λ (y)
(f16 x y))))

0.67 | separated
0.15 | next
0.06 | space

a small circle next to a small
six gon
(f14 ε (f14 ε (f17 2
(f5 6 x))))

a small nine gon next to a
medium square
(f5 9 (f5 1 (f17 1 (f20
4 x))))

Figure 4. Abstractions and programs learned for the graphics domain. Sample abstractions (right) learned from a minimal starting DSL
(left) for solving progressively more complex graphics program synthesis tasks with language annotations. Also shown with translation
probabilities. Our iterative algorithm learns alignment-based translation probabilities between natural language words and program
primitives to guide program search and abstraction (depicted are examples from the top-3 primitive translations for a given word; some
primitives are not high probability translations for any word.

71

m i t
Library learning as a scientific tool

72

!"
#$
%$
&'
("
)*
'+
',
$-
.$
%/

'0*
1.

23
'!"

#$
%&

"'

!"
#$
%$
&4
2-
45
-6
%#

70
%$
&'
%0
".
1/

*1
2'!
$(
)*"

'

Base L1 L2 L3
140

160

180

200

220

240

260

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

Base L1 L2 L3
50

100

150

200

250

300

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

Base L1 L2 L3

50

100

150

200

250

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

Base L1 L2 L3
125

150

175

200

225

250

275

-4.0

-3.5

-3.0

-2.5

Base L1 L2 L3
100

120

140

160

180

200

-4.0

-3.8

-3.6

-3.4

-3.2

-3.0

-2.8

Base L1 L2 L3
60

80

100

120

140

160

180

-3.3

-3.2

-3.1

-3.0

-2.9

-2.8

-2.7

Base L1 L2 L3
75

100

125

150

175

200

225

-3.8

-3.6

-3.4

-3.2

-3.0

-2.8

Base L1 L2 L3

80

100

120

140

160

180

-3.0

-2.8

-2.6

-2.4

-2.2

!"#$%&%'()#$ *+,*-#$.-/01)-$ 2"3!0#"3-

1+$#)-$/("$-$'30,*-$ 10#0-$
8%(* !9 !: !; 8%(* !9 !: !; 8%(* !9 !: !; 8%(* !9 !: !;

8%(* !9 !: !; 8%(* !9 !: !; 8%(* !9 !: !; 8%(* !9 !: !;

Figure 4: Relationship between concept libraries {Lbase, L1, L2, and L3} (x-axis); combined library size and average
program length in that library (dashed); and library-to-vocabulary alignment (solid).

and hierarchical structure with human descriptions. We
find that the length of people’s descriptions varies with
the length of an object’s generative program, establish-
ing a basic correspondence between language and a pro-
gram representations of object structure. By constructing
higher-order concept libraries which re-represent each
object using more abstract program components, we find
evidence that people’s language reflects an underlying rep-
resentational trade-off – people prefer compact libraries
of part concepts that efficiently capture structural motifs
appearing in many objects. An intriguing implication of
these findings is that there exists a “basic level” for part
naming, by analogy to the well known basic level for
object categories, and that can be explained by similar
information-theoretic principles (Rosch et al., 1976).

While these linguistic abstraction layers enable greater
compression, they may also introduce downstream chal-
lenges for communication: terms with more abstract
meanings may be less interpretable and/or too lossy in
some cases (e.g., pedagogical contexts where learners
may not be familiar with certain concepts). To better
understand how people communicate in these scenarios,
it may be useful to conduct experiments manipulating
what knowledge is shared between communicators to in-
vestigate the role of audience design and adaptation in
interactive settings (Clark & Murphy, 1982; Krauss &
Fussell, 1991; McCarthy et al., 2021).

In other settings, the level of detail contained in the
descriptions we collected may not be necessary to achieve
certain communicative goals, such as object identification.
A promising direction is to compare our descriptions to

those produced in reference games where coarser distinc-
tions between whole objects are sufficient, with the aim
of understanding how task goals and context shape the
relevance of different levels of abstraction (Degen et al.,
2020; Bisk et al., 2020).

It is natural to expect substantial variation across de-
scriptions in how well they support object understanding
in others. To better understand why some descriptions
are more informative than others, future work should also
measure how well the descriptions we collected in the
current study support the ability of other participants to
accurately reconstruct the target objects.

Our approach and findings build on a recent and grow-
ing literature using programs (Lake et al., 2015; Goodman
et al., 2014) and libraries of functional components (Tian
et al., 2020; McCarthy et al., 2021; Wong et al., 2021)
to model how people represent and communicate about
the world. Our work generalizes previous insights into
the statistical learning mechanisms that enable the rapid
learning of visual regularities (Fiser & Aslin, 2001; Orbán
et al., 2008; Austerweil & Griffiths, 2013) by proposing
a more expressive program-like representation that can
accommodate structure at multiple levels of abstraction.

More broadly, our work proposes and validates a gen-
eral strategy for leveraging complex behavioral readouts
(e.g., natural language descriptions) to draw rich and
meaningful inferences about the content and structure
of mental representations. Such approaches have tremen-
dous promise not only to advance cognitive theory, but
may contribute to the design of artificial systems that learn
more human-like abstractions.

be expected given the overall prevalence of the word
across subdomains and the amount of language data in
each subdomain (denominator). This analysis revealed
highly specialized vocabularies used for particular sub-
domains, but not others (e.g., drawer and knob in the
furniture subdomain), suggesting that participants did
invoke subdomain-specific part concepts to some extent.

To better evaluate whether these highly diagnostic
words reflected more systematic differences in word us-
age across subdomains, we computed the Jensen-Shannon
distance (JSD) between the word frequency distributions
in each set of subdomains, aggregating across all trials in
that subdomain. This metric is zero when two distribu-
tion are identical and large when two distributions are far
apart. We compared the the mean of all pairwise JSDs to
a null distribution generated by randomly permuting the
subdomain group of each trial. We found that the distance
between subdomains was significantly greater than ex-
pected under the null (Drawings: d = 0.439, p < 0.001;
Towers: d = 0.328, p < 0.001). Taken together, these
analyses indicate that people may choose distinct labels
to describe visually similar parts depending on the rest of
the scene (e.g. a circle may be a knob in one domain and
a wheel in another domain), even when simple graphics
primitives would have been sufficient.

Part II: Identifying concepts from language

The results so far suggest that people invoke subdomain-
specific part concepts when describing the objects in our
stimulus set, such as knobs and drawers, or windows
and doors. What accounts for observed preferences for
this lexicon — how many and which part concepts do
people have names for?

In this section, we formalize this library identification
problem by modeling the correspondence between peo-
ple’s vocabularies and a space of candidate concept li-
braries, each containing part concepts at varying levels of
complexity. We describe a procedure for constructing can-
didate libraries based on the hierarchical structure of each
subdomain. We then introduce a library-to-vocabulary
alignment model that measures how well programs writ-
ten in each library predict people’s object descriptions
(Wong et al., 2021).

Prior work suggests that people use language that ef-
ficiently compresses concepts into words (Regier et al.,
2015; Kirby et al., 2015; Zaslavsky et al., 2018; Sun
& Firestone, 2021). Our model allows us to derive an
information-theoretic account of lexical choice in our
object descriptions, which formally links language to effi-
cient communication of an object’s underlying conceptual
representation – we find that people favor a lexicon that
trades off between concise descriptions of objects on av-
erage, and the size of the overall concept libraries.

Lbase L1 L2 L3
2%/3"3%0*'2,/2*+0'!"#$%$"*(

!"#$"%&

!%"'(

!"#$"%&

!%"'(

blue_block()
red_block()
...

window()
...
row(6)
...

floor(window,
 door,
 window)...

house(h=2,
 w=3)
roof(6)

rotate(line(s=1),
 th=pi/6,
 r=1)...
circle(scale=0.5)
rotate(circle(s=0.1),
 th=pi/8,
 r=0.7)...

hexagon(s=1)
circle(s=0.5)
rotate(circle(s=0.1),
 th=pi/8,
 r=0.7)...

hexagon(s=1)
circle(s=0.5)
med_ring(
 circle(s=0.1),
 n=8)

hex_circ_med_ring(n=8)

!"#$%$&'(")*

+$,-$%.'!*/-01

Figure 3: Graphics libraries were defined by progressively
adding subroutines at higher levels of abstraction, result-
ing in more efficient expression of any particular program
at the expense of a larger library.

Methods

Modeling a space of candidate concept libraries By
design, the objects in our stimulus set are highly struc-
tured, having been generated through the hierarchical
combination of increasingly complex parts. However, the
corresponding graphics programs that recreate them were
written using a concept library containing only the base
primitives (Lbase): blocks and lines. As a consequence,
these programs are maximally verbose: they must com-
pose many individual blocks to represent a door, let alone
an entire house; and many individual lines to represent a
polygon like a hexagon, let alone a complex wheel.

To represent more complex shapes, we define higher-
order graphics libraries that augment the initial set of base
primitives with program subroutines (Fig. 3) that encap-
sulate part structure (e.g., a subroutine for generating an
entire roof).1 We constructed these libraries by abstract-
ing out the nested, parametric functions used to generate
each subdomain. In our experiments, we evaluate three
libraries (L1, L2, and L3), each containing subroutines
that build recursively on those at the previous level to
yield increasingly complex visual parts. For instance,
L1 contains subroutines that abstract directly over the
base library (e.g., from lines to polygons); and L2 con-
tains subroutines that abstract additionally over those in
L1 (e.g., polygons to rings of polygons). A given

1Our approach to defining these higher-order libraries is
analogous to the automated program library learning methods in
(Ellis et al., 2020; Tian et al., 2020; McCarthy et al., 2021; Wang
et al., 2021; Wong et al., 2021), which discover subroutines from
a dataset containing programs that often correspond qualitatively
to domain-relevant concepts.

[Wong*, McCarthy*, Grand* et al. Identifying concept libraries from language about object structure. CogSci 2022.]

Learning libraries: summary

What: Inductive program synthesis with natural language
guidance.

How: Discovery of reusable program fragments using language to
guide a library learning procedure.

Why: With only 100s of annotations, solve 72% more program
synthesis tasks than a leading synthesizer.

Learning from

unannotated text alone

Belinda 
Li

[LaMPP: Language Models as Probabilistic Priors for Perception and Action. arXiv 2023]

Will 
Chen

Pratyusha 
Sharma

m i t
Language as a latent variable, LMs as priors

75

lambda x, f:

 for i in range(x):

 f()

 rotate(360/x)

a pinwheel made of

Program generator

Execution model

m i t
LM priors for vision & beyond!

76

LaMPP: Language Models as Probabilistic Priors for Perception and Action

4. Inference: Finally, we perform inference in the graph-
ical model defined by p(y) and p(x | y) (or p(✓) p(y |
x, ✓)) to find the highest-scoring (or otherwise risk-
minimizing) configuration of y for a given x.

In Sections 3–5, we apply this framework to three learning
problems. In each section, we evaluate LAMPP’s ability
to improve generalization over base models. We focus
on three types of generalization: zero-shot (ZS), out-of-

distribution (OOD), and in-distribution (ID). The type of
generalization required depends on the availability and dis-
tribution of training data: ZS evaluations focus on the case
in which p(x | y) is known (possibly just for components of
y, e.g., appearances of individual objects), but no informa-
tion about the joint distribution p(y) (e.g., configurations of
rooms) is available at training time. OOD evaluations focus
on biased training sets (in which particular label combina-
tions are over- or under-represented). ID evaluations focus
on cases where the full evaluation distribution is known and
available at training time.

3. LAMPP for Semantic Segmentation

We first study the task of semantic image segmentation:
identifying object boundaries in an image and labeling each
object xi with its class yi. How might background knowl-
edge from an LM help with this task? Intuitively, it may
be hard for a bottom-up visual classifier to integrate global
image context and model correlations among distant objects’
labels. LMs encode common-sense information about the
global structure of scenes, which can be combined with
easy-to-predict object labels to help with more challenging
predictions.

3.1. Methods

Base model Standard models for semantic segmentation
discriminatively assign a label yi to each pixel xi in an input
image x according to some:

pseg(yi | x) . (3)

Our experiments use RedNet (Jiang et al., 2018), a ResNet-
50-based autoencoder model, to compute Eq. (3). By com-
puting arg maxy p(y | x) for each pixel in an input image,
we obtain a collection of segments: contiguous input re-
gions assigned the same label (see bottom of Fig. 2). When
applying LAMPP, we treat these segments as given, but
attempt to choose a better joint labeling for all segments in
an image.

Label Space We do so using the generative model depicted
in Fig. 2. We hypothesize a generative process in which
every image originates in a room r. Conditioned on the
room, a fixed number of objects are generated, each with
label yi. To model possible perceptual ambiguity, each

r

y1

d1

y2

d2

room

true
label

noisy
label

x1
x2

image
segments

bedroom

bed

bed nightstand

table

a nightstand looks
like a tablep()

a nightstand in
a bedroomp()

Figure 2. Generative model for image semantic segmentation.
Images originate in a room r, which generates the objects y1, y2 in
the room, which generate noisy object labels d1, d2 representing
perceptually similar objects. Finally, each di generates an image
segment xi, a continuous region of image pixels depicting each
object. Rooms r, true labels yi, and noisy labels di are latent,
while image segments xi are observed.

true object labels in turn generates a noisy object label di.
Finally, each of these generates an image segment xi.

We use the base segmentation model pseg to compute
p(xi | di) by applying Bayes’ rule locally for each segment:
p(xi | di) / pseg(di | xi)/p(di). All other distributions in
this generative model are parameterized by an LM, as de-
scribed below. Ultimately, we wish to recover “true” object
labels yi; the latent labels r and d help extract usable back-
ground information about objects’ co-occurrence patterns
and perceptual properties.

LM Queries We compute the object–room co-occurrence
probabilities p(yi | r) by prompting the LM with the string:

A(n) [r] has a(n) [yi]: [plausible / implausible]

The LM conditions on the non-highlighted portion of the
prompt and is expected to generate one of the highlighted
tokens. We compute the relative probability the LM assigns
to tokens plausible and implausible, then normalize these
over all object labels y to parameterize the final distribution.
We use the same procedure to compute the object–object
confusion model p(di | yi), prompting the LM with:

The [di] looks like the [yi]: [plausible / implausible]

Inference The model in Fig. 2 defines a joint distribution
over all labels y = y1, . . . , yn. To re-label a segmented
image, we compute the max-marginal-probability label for

LaMPP: Language Models as Probabilistic Priors for Perception and Action

y

r agent
location

true goal object
present?

living
room

gTV goal
object

agent
observation

a TV in a living roomp()

x

Figure 3. Generative model for object navigation. Specifically,
given a goal object g, we depict a decomposition of the agent’s
success score y, which takes on value 1 (true) if the goal object is
present and 0 (false) otherwise. We focus on a household domain,
where any particular agent location must be within some room
r. r then generates the success condition y (indicating whether
g is present at the agent location), which generates the agent
observation x of the location. Goal objects g and rooms r are
given, success conditions y are latent, and agent observations x
are partially-observed.

from a camera for object recognition and decision-making.
Prior knowledge about where goal objects are likely located
can guide this exploration, steering agents away from re-
gions of the environment unlikely to accomplish the agent’s
goals.

4.1. Methods

Base model We assume access to a pre-trained navigation
policy (in this case, from the STUBBORN agent; Luo et al.,
2022) that can plan a path to any specified coordinate a
in the environment given image observations x. Our goal
is to build a high-level policy ⇡(a | x) that can direct this
low-level navigation. We focus on navigation in household
environments, and assume access to a coarse semantic map
of an environment that identifies rooms, but not locations of
objects within them. In each state, the STUBBORN low-level
navigation policy also outputs a scalar score reflecting its
confidence that the goal object is present.

Label space Our high-level policy alternates between
performing two kinds of actions a:

• Navigation: the agent chooses a room r in the environ-
ment to move to. (When a room is selected, we direct
the low-level navigation policy to move to a point in the
center of the room, and then explore randomly within
the room for a fixed number of time steps.)

• Selection: whenever an observation is received dur-

ing navigation, the agent evaluates whether it has al-

ready reached the goal object. (When the goal object
is judged to be present, the episode is ended.)

A rollout of this policy thus consists of a sequence of nav-
igation actions, interleaved with a selection action for ev-
ery observation obtained while navigating. In both cases,
choosing actions effectively requires inference of a specific
unobserved property of environment state: whether the goal
object is in fact present near the agent. We represent this
property with a latent variable y. When navigating, the
agent must infer the room that is most likely to contain the
goal object. When selecting, the agent must infer whether
its current perception is reliable.

We normalize the low-level policy’s success score and inter-
pret it as a distribution p(x | y), then use the LM to define a
distribution p(y | r, g). Together, these give a distribution
over latent success conditions and observations given goals
and agent locations, which may be used to select actions in
the high-level policy.

LM queries For p(y | r, g), we use the same query as
in Section 3 for deriving object–room probabilities, inserting
g in place of yi, except here we do not normalize over
object labels (since y is binary), and simply take the relative
probability of generating the token plausible.

Inference With this model, we define a policy that per-
forms inference about the location of the goal object, then
greedily attempts to navigate to the location most likely
to contain it. This requires defining p(a | x, g) for both
navigation and selection steps.

• Navigation: the agent chooses a room r maximizing
p(y | r, g). (The agent does not yet have an observation
from the new room, so the optimal policy moves to the
room most likely to contain the goal object a priori.)

• Selection: the agent ends the episode only if p(y |
x, r, g) > ⌧ for some confidence threshold ⌧ .

During exploration, the agent maintains a list of previously
visited rooms. Navigation steps choose only among rooms
that have not yet been visited.

4.2. Experiments

We consider a modified version of the Habitat Challenge
ObjectNav task (Yadav et al., 2022). The task objective is
to find and move to an instance of the object in unfamiliar
household environments as quickly as possible. The agent
receives first-person RGBD images, compass readings, and
2D GPS values as inputs at each timestep. In our version
of the task, we assume access to a high-level map of the
environment which specifies the coordinates and label of
each room. Individual objects are not labeled; the agent

LaMPP: Language Models as Probabilistic Priors for Perception and Action

x1

make
pancakes task

�

action

t

y1 y2

x2 video
frame

transition
probabilities

crack
egg

� Dirichlet
prior

crack egg whisk �(�)
= p(to make pancakes,

crack egg then whisk)

Figure 4. Generative model for video-action segmentation. The
base model we use for this task is a HMM with transition proba-
bilities parameterized by ✓. In this task, we generate a prior over
model parameters ✓: Each task t generates a Dirichlet prior ↵
over action transitions, which in turn generates model parameters
✓. ✓ parameterizes the action transition distribution y1 ! y2.
Each action yi at timestep i then generates the observed video
frame xi. Tasks t and video frames xi are observed, actions yi are
partially-observed, and parameter priors ↵ and parameters ✓ are
latent.

We build on a model by Fried et al. (2020) that frames this
as inference in a task-specific hidden Markov model (HMM)
in which a latent sequence of actions generates a sequence
of video frames according to a distribution:

p(x1, . . . , xn | y1, . . . , yn)

/
Y

j

p(xj | yj ; ⌘) p(yj | yj�1; ✓) (7)

(omitting the dependence on the task t for clarity). This
generative model decomposes into an emission model with
parameters ⌘ and a transition model with parameters ✓t,
and allows efficient inference of p(y | x).2 p(yj | yj�1; ✓)
is a multinomial distribution parameterized by a table of
transition probabilities, each of which encodes the probabil-
ity that action yj�1 is followed by action yj .

In contrast to previous sections, which used pre-trained
domain models, here we apply LAMPP to the problem of
learning model parameters themselves. Specifically, we use
an LM to place a prior on transition parameters ✓, making
it possible to learn about valid action sequences from data
while still incorporating prior knowledge from language.
Given a dataset of labeled videos of the form (x1...n, y1...n),

2Fried et al. (2020)’s model is a hidden semi-Markov model
(HSMM) in which latent action states generate multiple lower-level
actions in sequence. While our experiments also use an HSMM,
we omit the HSMM emission model for clarity of presentation.

we compute a maximum a posteriori estimate of ✓:

arg max
✓

log p(✓) +
X

x,y

X

j

log p(yj | yj�1; ✓) , (8)

(likewise for ⌘). At evaluation time, we use these parameter
estimates to label new videos.

Label space We parameterize the prior p(✓) as a Dirichlet
distribution with hyperparameters ↵, according to which:

p(✓) /
Y

i

✓↵i�1
i . (9)

Intuitively, the larger ↵i is, the more probable the corre-
sponding ✓i is judged to be a priori. Here, parameters
✓y!y0 are probabilities of transitioning from action y to y0;
we would like ↵y!y0 to be large for plausible transitions,
which is achieved by extracting values directly from a LM.

Prompting the LM To derive values of ↵ for each action
transition y ! y0, we query the LM with the prompt:

Your task is to [t]. Here is an *unordered* set

of possible actions: {[Y]}. Please order these

actions for your task. The step after [y] can be

[y0]

where Y is a set of all available actions for the task. We
condition the LM on the non-highlighted portion of the
prompt and set ↵y!y0 = � · pLM(y0 | prompt(y)) (the
probability of completing the prompt with the action name
y0), where � controls the strength of the prior.

Inference The use of a Dirichlet prior means that Eq. (8)
has a convenient closed-form solution:

✓y!y0 =
↵y!y0 +#(y ! y0)� 1

(
P

y00 ↵y!y00) + #(y)� |Y | , (10)

where #(y ! y0) denotes the number of occurrences of
the transition y ! y0 in the training data, #(y) denotes the
number of occurrences of y in the training data, and |Y | is
the total number of actions.

5.2. Experiments

We evaluate using the CrossTask dataset (Zhukov et al.,
2019), which features instructional videos depicting tasks
(e.g., make pancakes). The learning problem is to segment
videos into regions and annotate each region with the corre-
sponding action being depicted (e.g., add egg).

We evaluate the ability of the base model and LAMPP to
perform zero-shot and out-of-distribution generalization.
For all experiments with LAMPP, we use � = 10. We do
not study a MC baseline for this task, as model chaining is
unable to generate parameters rather than labels.

Semantic

segmentation!

Household 
navigation!

Activity 
recognition!

m i t
LM priors improve generalization

77

LaMPP: Language Models as Probabilistic Priors for Perception and Action

each segment independently:

arg max p(yi | x)

= arg max
X

r

X

y\{yi}

X

d

p(x, d, y, r) (4)

The form of the decision rule used for semantic segmenta-
tion (which includes several simplifications for computa-
tional efficiency) can be found in Appendix A.1.

3.2. Experiments

We use the SUN RGB-D dataset for our semantic segmen-
tation tasks (Song et al., 2015), which contains RGB-D
images of indoor environments. We also implement a model-
chaining (MC) baseline that integrates LM knowledge with-
out considering model uncertainties. We take noisy labels
from the image model (di) and directly query the LM for
true labels (yi). Details of this baseline can be found in Ap-
pendix A.2. We attempt to make the MC inference proce-
dure as analogous to our approach as possible: the LM must
account for both room-object co-occurrence likelihoods and
object-object resemblance likelihoods when predicting true
labels. However, here, the LM must implicitly incorporate
these likelihoods into its text-scoring, rather than integrating
them into a structured probabilistic framework. We evalu-
ate the RedNet base model, this model chaining approach,
and LAMPP on in-distribution and out-of-distribution

generalization.

ID Generalization We use a RedNet checkpoint trained
on the entire SUNRGB-D training split. As these splits were
not created with any special biases in mind, the training split
should reflect a similar label distribution to the test split.

OOD Generalization We study the setting where the
training distribution’s p(yi, yj) differs from the true dis-
tribution’s. We do this by picking two object labels that
commonly occur together (i.e. picking yi and yj such that
p(yi, yj) is high), and removing all images from the train-
ing set where they do occur together (thus making p(yi, yj)
close to zero in the training set). In particular, we choose
bed and nightstand as these two objects, and hold out all im-
ages in the training set where nightstands and beds co-occur
(keeping all other images). After training on this set, we
evaluate on the original test split where beds and nightstands
frequently co-occur.

3.3. Results

We evaluate the mean intersection-of-union (mIoU) between
predicted and ground-truth object segmentations over all
object categories for ID and OOD in Table 1.

In each setting, we compare the base model against LAMPP.
We see that in both the ID and OOD cases, LAMPP im-
proves upon the baseline image model. The improvements

Model mIoU Best/Worst Object (�IoU)

ID
Base model 47.8 -
Model chaining 37.5 shower curtain (+16.9)

toilet (�37.2)

LAMPP 48.3 shower curtain (+18.9)
desk (�2.16)

OOD Base model 33.8 -
LAMPP 34.0 nightstand (+8.92)

sofa (�2.50)

Table 1. Image semantic segmentation results for ID and OOD
generalization. We report Intersection-over-Union (IoU) for each
model: the base model, a model chaining approach, and LAMPP.
We report mIoU (IoUs averaged over each object category), as
well as the most- and least-improved object from each method
relative to the base model (and the corresponding � IoU). LAMPP
improves semantic segmentation dramatically on certain categories,
while having minimal effect on all other categories.

seem small in an absolute sense because we average over
37 object categories. To get a better understanding of the
distribution of improvements over object categories, we re-
port per-category differences in IoU of our model relative

to the baseline image model. The rightmost column of Ta-
ble 1 shows the most-improved and least-improved object
categories (and the corresponding IoU change for those cat-
egories). We see in both settings that the top object category
improved significantly while all other object categories were
not significantly affected.

In the ID setting, the accuracy of detecting shower cur-

tains improves by nearly 20 points with LAMPP, as the
base model obtains near-0% mIoU on shower curtains, al-
most always mistaking them for (window) curtains. Here,
background knowledge from language fixes a major (and
previously undescribed) prediction error for a rare class.
In the OOD setting, the base image model sees far fewer
examples of nightstands and consequently never predicts
nightstands on the test data. (Nightstands are frequently
predicted to be tables and cabinets instead). This is like-
wise rectified with LAMPP: background knowledge from
language reduces model sensitivity to a systematic bias in
dataset construction.

Finally, we see that the model chaining approach repairs
prediction errors on the same rare class as LAMPP in the
ID setting, but it also introduces new prediction errors on
far more classes.

4. LAMPP for Navigation

We next turn to the problem of object navigation. Here,
we wish to build an agent that, given a goal object g (e.g., a
television or a bed), can take actions a to explore and find g
in an environment, while using noisy partial observations x

LaMPP: Language Models as Probabilistic Priors for Perception and Action

must rely on top-down knowledge of where certain objects
are likely to be in order to efficiently find the target object.

We implement a MC baseline where the LM guides agent ex-
ploration by specifying an ordering of rooms to visit. This is
similar to prior work that use LMs to specify high-level poli-
cies (Zeng et al., 2023; Sharma et al., 2022), whereby neither
LM nor observation model uncertainties are accounted for
when generating the high-level policy. Details of the MC
baseline can be found in Appendix B.1.

We evaluate the ability of the original STUBBORN agent
(base model), model chaining, and our agent (LAMPP) to
perform zero-shot generalization, where the training data
does not contain any information about p(y | r, g).1 We also
compare to a uniform prior baseline where we preserve the
high-level policy of our agent but replace LM priors over
object-room co-occurrences with uniform priors:

p(y | r, g) = 1

room types in environment
. (5)

Note in the zero-shot case we have no additional information
about p(y | r, g), so we must assume it is uniform.

4.3. Evaluation & Results

We evaluate success rate (SR), as measured by the percent
of instances in which the agent successfully navigated to the
goal object. Because the STUBBORN agent is designed to
handle only single floors (the mapping module only tracks
a 2D map of the current floor), we evaluate only instances
in which the goal object is located on the same floor as the
agent’s starting location.

Results are reported in Table 2. LAMPP far outperforms
both the base policy and the policy that assumes uniform
priors, in overall and object-wise success rates. We find
greatest improvements in goal object categories that have
strong tendencies to occur only in specific rooms, such as
TV monitors, and less for objects which tend to occur in
many different rooms, like plants.

Compared to the MC baseline, LAMPP is better in terms of
class-averaged SR, and comparable in terms of frequency-
averaged SR. What accounts for this difference in perfor-
mance? In the MC approach, high-level decisions from
the LM and low-level decisions from observation models
are usually considered separately and delegated to different
phases (it is hard to combine these information sources in
string-space): in our implementation, the MC baseline uses
the top-down LM for navigation, and the bottom-up obser-
vation model for selection. Because the policy dictated by

1At the time these experiments were conducted, room labels
were not yet present in the dataset, so we could only study the
zero-shot setting. To evaluate LAMPP, the first two authors of the
paper manually annotated room labels in the evaluation set.

Success rate
Model Class Freq. Best/Worst Object (�SR)

Base model 52.7 53.8 -
Uniform prior 52.1 51.7 -
Model chaining 61.2 65.3 Toilet (+20.9)

TV Monitor (�4.2)

LAMPP 66.5 65.9 TV Monitor (+33.0)
Plant (�0.0)

Table 2. Navigation Results for ZS generalization. We report suc-
cess rates (SR) for the base model, a uniform prior baseline model,
a model chaining approach, and LAMPP. We report both a class-

averaged SR (over goal objects) and a frequency-averaged SR
(over episodes). We also report the most-improved goal object and
least-improved goal object for each method relative to the base
model. We find that by using LAMPP, we are able to achieve
significant improvement over certain object classes.

the LAMPP probabilistic model also ignores bottom-up ob-
servation probabilities until the goal object is observed, the
navigation step of both approaches is functionally equiva-
lent. However, for the selection step, we find that combining
bottom-up and top-down uncertainties is crucial; in analy-
ses in Appendix B.2, we see that when model uncertainties
are ablated, our agent actually underperforms a comparable
model chaining baseline.

Other than performance differences, LAMPP is also sub-
stantially more query-efficient: MC requires one query per
navigation action of each episode, while LAMPP simply
requires a fixed number of queries ahead of time, which can
be applied to all actions and episodes.

5. LAMPP for Action Recognition and

Segmentation

The final task we study focuses on video understanding:
specifically, taking demonstrative videos of a task (e.g.,
making an omelet) and segmenting them into actions (e.g.,
cracking or whisking eggs). Because it is hard to procure
segmented and annotated videos, datasets for this task are
usually small, and it may be difficult for models trained
on task data alone to learn robust models of task-action
relationships and action orderings. Large LMs’ training
data contains much more high-level information about tasks
and steps that can be taken to complete them.

5.1. Methods

Base model Given a video of task t, we wish to label
each video frame xi with an action yi (chosen from a fixed
inventory of plausible actions for the task) according to:

arg max
y1···yn

p(y1 · · · yn | x1 · · ·xn, t). (6)

LaMPP: Language Models as Probabilistic Priors for Perception and Action

4. Inference: Finally, we perform inference in the graph-
ical model defined by p(y) and p(x | y) (or p(✓) p(y |
x, ✓)) to find the highest-scoring (or otherwise risk-
minimizing) configuration of y for a given x.

In Sections 3–5, we apply this framework to three learning
problems. In each section, we evaluate LAMPP’s ability
to improve generalization over base models. We focus
on three types of generalization: zero-shot (ZS), out-of-

distribution (OOD), and in-distribution (ID). The type of
generalization required depends on the availability and dis-
tribution of training data: ZS evaluations focus on the case
in which p(x | y) is known (possibly just for components of
y, e.g., appearances of individual objects), but no informa-
tion about the joint distribution p(y) (e.g., configurations of
rooms) is available at training time. OOD evaluations focus
on biased training sets (in which particular label combina-
tions are over- or under-represented). ID evaluations focus
on cases where the full evaluation distribution is known and
available at training time.

3. LAMPP for Semantic Segmentation

We first study the task of semantic image segmentation:
identifying object boundaries in an image and labeling each
object xi with its class yi. How might background knowl-
edge from an LM help with this task? Intuitively, it may
be hard for a bottom-up visual classifier to integrate global
image context and model correlations among distant objects’
labels. LMs encode common-sense information about the
global structure of scenes, which can be combined with
easy-to-predict object labels to help with more challenging
predictions.

3.1. Methods

Base model Standard models for semantic segmentation
discriminatively assign a label yi to each pixel xi in an input
image x according to some:

pseg(yi | x) . (3)

Our experiments use RedNet (Jiang et al., 2018), a ResNet-
50-based autoencoder model, to compute Eq. (3). By com-
puting arg maxy p(y | x) for each pixel in an input image,
we obtain a collection of segments: contiguous input re-
gions assigned the same label (see bottom of Fig. 2). When
applying LAMPP, we treat these segments as given, but
attempt to choose a better joint labeling for all segments in
an image.

Label Space We do so using the generative model depicted
in Fig. 2. We hypothesize a generative process in which
every image originates in a room r. Conditioned on the
room, a fixed number of objects are generated, each with
label yi. To model possible perceptual ambiguity, each

r

y1

d1

y2

d2

room

true
label

noisy
label

x1
x2

image
segments

bedroom

bed

bed nightstand

table

a nightstand looks
like a tablep()

a nightstand in
a bedroomp()

Figure 2. Generative model for image semantic segmentation.
Images originate in a room r, which generates the objects y1, y2 in
the room, which generate noisy object labels d1, d2 representing
perceptually similar objects. Finally, each di generates an image
segment xi, a continuous region of image pixels depicting each
object. Rooms r, true labels yi, and noisy labels di are latent,
while image segments xi are observed.

true object labels in turn generates a noisy object label di.
Finally, each of these generates an image segment xi.

We use the base segmentation model pseg to compute
p(xi | di) by applying Bayes’ rule locally for each segment:
p(xi | di) / pseg(di | xi)/p(di). All other distributions in
this generative model are parameterized by an LM, as de-
scribed below. Ultimately, we wish to recover “true” object
labels yi; the latent labels r and d help extract usable back-
ground information about objects’ co-occurrence patterns
and perceptual properties.

LM Queries We compute the object–room co-occurrence
probabilities p(yi | r) by prompting the LM with the string:

A(n) [r] has a(n) [yi]: [plausible / implausible]

The LM conditions on the non-highlighted portion of the
prompt and is expected to generate one of the highlighted
tokens. We compute the relative probability the LM assigns
to tokens plausible and implausible, then normalize these
over all object labels y to parameterize the final distribution.
We use the same procedure to compute the object–object
confusion model p(di | yi), prompting the LM with:

The [di] looks like the [yi]: [plausible / implausible]

Inference The model in Fig. 2 defines a joint distribution
over all labels y = y1, . . . , yn. To re-label a segmented
image, we compute the max-marginal-probability label for

LaMPP: Language Models as Probabilistic Priors for Perception and Action

y

r agent
location

true goal object
present?

living
room

gTV goal
object

agent
observation

a TV in a living roomp()

x

Figure 3. Generative model for object navigation. Specifically,
given a goal object g, we depict a decomposition of the agent’s
success score y, which takes on value 1 (true) if the goal object is
present and 0 (false) otherwise. We focus on a household domain,
where any particular agent location must be within some room
r. r then generates the success condition y (indicating whether
g is present at the agent location), which generates the agent
observation x of the location. Goal objects g and rooms r are
given, success conditions y are latent, and agent observations x
are partially-observed.

from a camera for object recognition and decision-making.
Prior knowledge about where goal objects are likely located
can guide this exploration, steering agents away from re-
gions of the environment unlikely to accomplish the agent’s
goals.

4.1. Methods

Base model We assume access to a pre-trained navigation
policy (in this case, from the STUBBORN agent; Luo et al.,
2022) that can plan a path to any specified coordinate a
in the environment given image observations x. Our goal
is to build a high-level policy ⇡(a | x) that can direct this
low-level navigation. We focus on navigation in household
environments, and assume access to a coarse semantic map
of an environment that identifies rooms, but not locations of
objects within them. In each state, the STUBBORN low-level
navigation policy also outputs a scalar score reflecting its
confidence that the goal object is present.

Label space Our high-level policy alternates between
performing two kinds of actions a:

• Navigation: the agent chooses a room r in the environ-
ment to move to. (When a room is selected, we direct
the low-level navigation policy to move to a point in the
center of the room, and then explore randomly within
the room for a fixed number of time steps.)

• Selection: whenever an observation is received dur-

ing navigation, the agent evaluates whether it has al-

ready reached the goal object. (When the goal object
is judged to be present, the episode is ended.)

A rollout of this policy thus consists of a sequence of nav-
igation actions, interleaved with a selection action for ev-
ery observation obtained while navigating. In both cases,
choosing actions effectively requires inference of a specific
unobserved property of environment state: whether the goal
object is in fact present near the agent. We represent this
property with a latent variable y. When navigating, the
agent must infer the room that is most likely to contain the
goal object. When selecting, the agent must infer whether
its current perception is reliable.

We normalize the low-level policy’s success score and inter-
pret it as a distribution p(x | y), then use the LM to define a
distribution p(y | r, g). Together, these give a distribution
over latent success conditions and observations given goals
and agent locations, which may be used to select actions in
the high-level policy.

LM queries For p(y | r, g), we use the same query as
in Section 3 for deriving object–room probabilities, inserting
g in place of yi, except here we do not normalize over
object labels (since y is binary), and simply take the relative
probability of generating the token plausible.

Inference With this model, we define a policy that per-
forms inference about the location of the goal object, then
greedily attempts to navigate to the location most likely
to contain it. This requires defining p(a | x, g) for both
navigation and selection steps.

• Navigation: the agent chooses a room r maximizing
p(y | r, g). (The agent does not yet have an observation
from the new room, so the optimal policy moves to the
room most likely to contain the goal object a priori.)

• Selection: the agent ends the episode only if p(y |
x, r, g) > ⌧ for some confidence threshold ⌧ .

During exploration, the agent maintains a list of previously
visited rooms. Navigation steps choose only among rooms
that have not yet been visited.

4.2. Experiments

We consider a modified version of the Habitat Challenge
ObjectNav task (Yadav et al., 2022). The task objective is
to find and move to an instance of the object in unfamiliar
household environments as quickly as possible. The agent
receives first-person RGBD images, compass readings, and
2D GPS values as inputs at each timestep. In our version
of the task, we assume access to a high-level map of the
environment which specifies the coordinates and label of
each room. Individual objects are not labeled; the agent

Bed Nightstand

LM priors: summary

What: Language as a source of background knowledge in general 
probabilistic models.

How: Query LMs to parameterize domain-specific graphical
models.

Why: Big increases on accuracy on rare labels, input
configurations.

Learning interactively

Evan 
Hernandez

Teona 
Bagashvili

Jesse 
Mu

[Compositional Explanations
of Neurons. NeurIPS 2020.]

+ David Bau and Antonio Torralba

[Natural Language Descriptions of
Deep Visual Features. ICLR 2022.]

Sarah 
Schwettmann

m i t
Understanding deep networks

80

Poodle⇒ ⇒

What has this network learned?

m i t
Understanding features in deep networks

81

Poodle⇒ ⇒

What is the function of this neuron?

m i t
Labeling neurons with visualizations

82

3

Ued (cRlRU)

\ellRZ (cRlRU)

ZUinkled (We[WXUe)

meVhed (We[WXUe)

ZRRd (maWeUial)

fabUic (maWeUial)

fRRW (SaUW)

dRRU (SaUW)

aiUSlane (RbjecW)

ZaWeUfall (RbjecW)

aUW VWXdiR (Vcene)

beach (Vcene)

Fig. 1. Samples from the Broden Dataset. The ground truth for each concept is a pixel-wise dense annotation.

Top	activated	images

Segmented	images	using	the	binarized unit	activation	map

Semantic	segmentation	annotations

Segmented	annotations

Fig. 2. Scoring unit interpretability by evaluating the unit for semantic
segmentation.

bilinear interpolation, anchoring interpolants at the center of each
unit’s receptive field.

Sk(x) is then thresholded into a binary segmentation: Mk(x) ⌘
Sk(x) � Tk, selecting all regions for which the activation exceeds
the threshold Tk. These segmentations are evaluated against every
concept c in the dataset by computing intersections Mk(x)\Lc(x),
for every (k, c) pair.

The score of each unit k as segmentation for concept c is
reported as a the Intersection over Union score (IoU) across all the
images in the dataset,

IoUk,c =

P
|Mk(x) \ Lc(x)|P
|Mk(x) [Lc(x)|

, (1)

where | · | is the cardinality of a set. Because the dataset contains
some types of labels which are not present on some subsets of
inputs, the sums are computed only on the subset of images that
have at least one labeled concept of the same category as c. The
value of IoUk,c is the accuracy of unit k in detecting concept
c; we consider one unit k as a detector for concept c if IoUk,c

exceeds a threshold (> 0.04). Our qualitative results are insensitive
to the IoU threshold: different thresholds denote different numbers
of units as concept detectors across all the networks but relative
orderings remain stable. Given that one unit might be the detector
for multiple concepts, here we choose the top ranked label. To
quantify the interpretability of a layer, we count the number of
unique concepts aligned with units, i.e. unique detectors.

Figure 2 summarizes the whole process of scoring unit
interpretability: By segmenting the annotation mask using the
receptive field of units for the top activated images, we compute
the IoU for each concept. Importantly, the IoU which evaluates the
quality of the segmentation of a unit is an objective confidence score
for interpretability that is comparable across networks, enabling us

TABLE 2
Collection of tested CNN Models

Training Network dataset or task
none AlexNet random

Supervised

AlexNet ImageNet, Places205, Places365, Hybrid.
GoogLeNet ImageNet, Places205, Places365.

VGG-16 ImageNet, Places205, Places365, Hybrid.
ResNet-152 ImageNet, Places365.

DenseNet-161 ImageNet, Places365.

Self AlexNet

context, puzzle, egomotion,
tracking, moving, videoorder,
audio, crosschannel,colorization.
objectcentric, transinv.

to compare interpretability of different representations and so lays
the basis for the experiments below. Note that network dissection
results depends on the underlying vocabulary: if a unit matches a
human-understandable concept that is absent from Broden, that unit
will not score well for interpretability. Future versions of Broden
will include a larger vocabulary of visual concepts.

3 EXPERIMENTS OF INTERPRETING DEEP VISUAL
REPRESENTATIONS

In this section, we conduct a series of experiments to interpret the
internal representations of deep visual representations. In Sec.3.1,
we validate our method using human evaluation. In Sec.3.2 we
use random unitary rotations of a learned representation to test
whether interpretability of CNNs is an axis-independent property;
we find that it is not, and we conclude that interpretability is not
an inevitable result of the discriminative power of a representation.
In Sec.3.3 we analyze all the convolutional layers of AlexNet
as trained on ImageNet [38] and Places [39]. We confirm that
our method reveals detectors for higher-level semantic concepts
at higher layers and lower-level concepts at lower layers; and
that more detectors for higher-level concepts emerge under scene
training. Then, we show that different network architectures such
as AlexNet, VGG, and ResNet yield different interpretability, and
differently supervised training tasks and self-supervised training
tasks also yield a variety of levels of interpretability in Sec.3.4.
Additionally in Sec.3.5 we show the interpretability of model
trained from captioning images. Another set of experiments
shows the impact of different training conditions in Sec.3.6
and what happens during the transfer learning in Sec.3.7. We
further examine the relationship between discriminative power
and interpretability in Sec.3.9, and investigate a possible way to
improve the interpretability of CNNs by increasing their width in
Sec.3.8. Finally in Sec.3.10, we utilize the interpretable units as
explanatory factors to the prediction given by a CNN.

For testing we used CNN models with different architectures
and primary tasks (Table 2), including AlexNet [38], GoogLeNet

3

Ued (cRlRU)

\ellRZ (cRlRU)

ZUinkled (We[WXUe)

meVhed (We[WXUe)

ZRRd (maWeUial)

fabUic (maWeUial)

fRRW (SaUW)

dRRU (SaUW)

aiUSlane (RbjecW)

ZaWeUfall (RbjecW)

aUW VWXdiR (Vcene)

beach (Vcene)

Fig. 1. Samples from the Broden Dataset. The ground truth for each concept is a pixel-wise dense annotation.

Top	activated	images

Segmented	images	using	the	binarized unit	activation	map

Semantic	segmentation	annotations

Segmented	annotations

Fig. 2. Scoring unit interpretability by evaluating the unit for semantic
segmentation.

bilinear interpolation, anchoring interpolants at the center of each
unit’s receptive field.

Sk(x) is then thresholded into a binary segmentation: Mk(x) ⌘
Sk(x) � Tk, selecting all regions for which the activation exceeds
the threshold Tk. These segmentations are evaluated against every
concept c in the dataset by computing intersections Mk(x)\Lc(x),
for every (k, c) pair.

The score of each unit k as segmentation for concept c is
reported as a the Intersection over Union score (IoU) across all the
images in the dataset,

IoUk,c =

P
|Mk(x) \ Lc(x)|P
|Mk(x) [Lc(x)|

, (1)

where | · | is the cardinality of a set. Because the dataset contains
some types of labels which are not present on some subsets of
inputs, the sums are computed only on the subset of images that
have at least one labeled concept of the same category as c. The
value of IoUk,c is the accuracy of unit k in detecting concept
c; we consider one unit k as a detector for concept c if IoUk,c

exceeds a threshold (> 0.04). Our qualitative results are insensitive
to the IoU threshold: different thresholds denote different numbers
of units as concept detectors across all the networks but relative
orderings remain stable. Given that one unit might be the detector
for multiple concepts, here we choose the top ranked label. To
quantify the interpretability of a layer, we count the number of
unique concepts aligned with units, i.e. unique detectors.

Figure 2 summarizes the whole process of scoring unit
interpretability: By segmenting the annotation mask using the
receptive field of units for the top activated images, we compute
the IoU for each concept. Importantly, the IoU which evaluates the
quality of the segmentation of a unit is an objective confidence score
for interpretability that is comparable across networks, enabling us

TABLE 2
Collection of tested CNN Models

Training Network dataset or task
none AlexNet random

Supervised

AlexNet ImageNet, Places205, Places365, Hybrid.
GoogLeNet ImageNet, Places205, Places365.

VGG-16 ImageNet, Places205, Places365, Hybrid.
ResNet-152 ImageNet, Places365.

DenseNet-161 ImageNet, Places365.

Self AlexNet

context, puzzle, egomotion,
tracking, moving, videoorder,
audio, crosschannel,colorization.
objectcentric, transinv.

to compare interpretability of different representations and so lays
the basis for the experiments below. Note that network dissection
results depends on the underlying vocabulary: if a unit matches a
human-understandable concept that is absent from Broden, that unit
will not score well for interpretability. Future versions of Broden
will include a larger vocabulary of visual concepts.

3 EXPERIMENTS OF INTERPRETING DEEP VISUAL
REPRESENTATIONS

In this section, we conduct a series of experiments to interpret the
internal representations of deep visual representations. In Sec.3.1,
we validate our method using human evaluation. In Sec.3.2 we
use random unitary rotations of a learned representation to test
whether interpretability of CNNs is an axis-independent property;
we find that it is not, and we conclude that interpretability is not
an inevitable result of the discriminative power of a representation.
In Sec.3.3 we analyze all the convolutional layers of AlexNet
as trained on ImageNet [38] and Places [39]. We confirm that
our method reveals detectors for higher-level semantic concepts
at higher layers and lower-level concepts at lower layers; and
that more detectors for higher-level concepts emerge under scene
training. Then, we show that different network architectures such
as AlexNet, VGG, and ResNet yield different interpretability, and
differently supervised training tasks and self-supervised training
tasks also yield a variety of levels of interpretability in Sec.3.4.
Additionally in Sec.3.5 we show the interpretability of model
trained from captioning images. Another set of experiments
shows the impact of different training conditions in Sec.3.6
and what happens during the transfer learning in Sec.3.7. We
further examine the relationship between discriminative power
and interpretability in Sec.3.9, and investigate a possible way to
improve the interpretability of CNNs by increasing their width in
Sec.3.8. Finally in Sec.3.10, we utilize the interpretable units as
explanatory factors to the prediction given by a CNN.

For testing we used CNN models with different architectures
and primary tasks (Table 2), including AlexNet [38], GoogLeNet

Idea: determine a 
neuron's function by
identifying input (regions)
that activate it. 

Extremely labor-intensive!

m i t

(e) logical forms L(x)

(d) concepts C(x)

blue IoU .006

water IoU .14

river IoU .08 NOT blue IoU .004

water OR river IoU .15
(water OR river)
AND NOT blue IoU .16

Intersection
Neuron + Concept

(f) IoU

(b) neuron f483(x)

(a) inputs x

(c) neuron masks M483(x)

Figure 1: Given a set of inputs (a) and scalar neuron activations (b) converted into binary masks (c),
we generate an explanation via beam search, starting with an inventory of primitive concepts (d), then
incrementally building up more complex logical forms (e). We attempt to maximize the IoU score of
an explanation (f); depicted is the IoU of M483(x) and (water OR river) AND NOT blue.

quality and interpretability of these learned concepts relate to model performance? Third, can we use39

the logical concepts encoded by neurons to control model behavior in predictable ways? We find that:40

1. Neurons learn compositional concepts: in image classification, we identify neurons that41

learn meaningful perceptual abstractions (e.g. tall structures) and others that fire for unrelated42

concepts. In natural language inference (NLI), we show that shallow heuristics (based on43

e.g. gender and lexical overlap) are not only learned, but reified in individual neurons.44

2. Compositional explanations help predict model accuracy, but interpretability is not always45

associated with accurate classification: in image classification, human-interpretable ab-46

stractions are correlated with model performance, but in NLI, neurons that reflect shallower47

heuristics are anticorrelated with performance.48

3. Compositional explanations allow users to predictably manipulate model behavior: we49

can generate crude “copy-paste” adversarial examples based on inserting words and image50

patches to target individual neurons, in contrast to black-box approaches [1, 36, 37].51

2 Generating compositional explanations52

Consider a neural network model f that maps inputs x to vector representations r 2 Rd. f might53

be a prefix of a convolutional network trained for image classification or a sentence embedding54

model trained for a language processing task. Now consider an individual neuron fn(x) 2 R and its55

activation on a set of concrete inputs (e.g. ResNet-18 [15] layer 4 unit 483; Figure 1a–b). How might56

we explain this neuron’s behavior in human-understandable terms?57

The intuition underlying our approach is shared with the NetDissect procedure of Bau et al. [5];58

here we describe a generalized version. The core of this intuition is that a good explanation is a59

description (e.g. a named category or property) that identifies the same inputs for which fn activates.60

Formally, assume we have a space of pre-defined atomic concepts C 2 C where each concept is a61

function C : x 7! {0, 1} indicating whether x is an instance of C. For image pixels, concepts are62

image segmentation masks; for the water concept, C(x) is 1 when x is an image region containing63

water (Figure 1d). Given some measure � of the similarity between neuron activations and concepts,64

NetDissect explains the neuron fn by searching for the concept C that is most similar:65

EXPLAIN-NETDISSECT(n) = argmax
C2C

�(n,C). (1)

While � can be arbitrary, Bau et al. [5] first threshold the continuous neuron activations fn(x) into66

binary masks Mn(x) 2 {0, 1} (Figure 1c). This can be done a priori (e.g. for post-ReLU activations,67

thresholding above 0), or by dynamically thresholding above a neuron-specific percentile. We can68

then compare binary neuron masks and concepts with the Intersection over Union score (IoU, or69

Jaccard similarity; Figure 1f):70

�(n,C) , IoU(n,C) =
⇥X

x

(Mn(x) ^ C(x))
⇤ � ⇥X

x

(Mn(x) _ C(x))
⇤
. (2)

2

Labeling neurons with language

83

water that is
not blue

max log p(description ∣ mask) − log p(description)

λ
pmi(⋅ ; ⋅)

m i t
Machine-generated neuron descriptions

84

Under review as a conference paper at ICLR 2022

Figure 2: Examples of MILAN descriptions on the generalization tasks described in Section 4. Even highly
specific labels (like the top boundaries of horizontal objects) can be predicted for neurons in new networks.
Failure modes include semantic errors, e.g. MILAN misses the cupcakes in the dog faces and cupcakes neuron.

3.1 APPROXIMATING THE EXEMPLAR SET

As written, the exemplar set in Equation (1) captures a neuron’s behavior on all image patches. This
set is large (limited only by the precision used to represent individual pixel values), so we follow past
work (Bau et al., 2017) by restricting each Ei to the set of images that cause the greatest activation
in the neuron fi. For convolutional neurons in image processing tasks, sets Ei ultimately comprise
k images with activation masks indicating the regions of those images in which fi fired (Fig. 1a; see
Bau et al. 2017 for details). Throughout this paper, we use exemplar sets with k = 15 images and
choose ⌘i equal to the 0.99 percentile of activations for the neuron fi.

3.2 MODELING p(d | E) AND p(d)

The term pmi(d;Ei) in Equation (2) can be expressed in terms of two distributions: the probability
p(d | Ei) that a human would describe an image region with d, and the probability p(d) that a
human would use the description d for any neuron. p(d | Ei) is, roughly speaking, a distribution
over image captions (Donahue et al., 2015). Here, however, the input to the model is not a single
image but a set of image regions (the masks in Fig. 1a); we seek natural language descriptions of
the common features of those regions. We approximate p(d | Ei) with learned model—specifically
the Show-Attend-Tell image description model of Xu et al. (2015) trained on the MILANNOTATIONS
dataset described below, and with several modifications tailored to our use case. We approximate
p(d) with a two-layer LSTM language model (Hochreiter & Schmidhuber, 1997) trained on the text
of MILANNOTATIONS. Details about both models are provided in Appendix B.

4

m i t
Editing models

85

m i t
Editing models

86

⇒ ⇒car

ship

chihuahua

frog

Delete neurons labeled as text recognizers

 12% decrease in error rate!→

m i t
Editing models

87

Under review as a conference paper at ICLR 2022

(a) training dataset (b) adversarial
test dataset

(c) text neuron

layer3-134, “words and letters”

Figure 7: Network editing. (a) We train
an image classifier on a synthetic dataset in
which half the images include the class label
written in text in the corner. (b) We eval-
uate the classifier on an adversarial test set,
in which every image has a random textual
label. (c) Nearly a third of neurons in the
trained model model detect text, hurting its
performance on the test set.

class (from the ImageNet validation set); in all these im-
ages, a random (usually incorrect) text label is included.
We train and evaluate a fresh ResNet18 model on this
dataset, holding out 10% of the training data as a vali-
dation dataset for early stopping. Training details can be
found in Appendix E.

Method We use MILAN to obtain descriptions of every
residual neuron in the model as well as the first convo-
lutional layer. We identify all neurons whose description
contains text, word, or letter. To identify spurious neu-
rons, we first assign each text neuron an independent im-
portance score by removing it from the network and mea-
suring the resulting drop in validation accuracy (with non-
adversarial images). We then sort neurons by importance
score (with the least important first), and successively ab-
late them from the model.

Results The result of this procedure on adversarial test
accuracy is shown in Fig. 8. Training on the spurious
data substantially reduces ResNet18’s performance on
the adversarial test set: the model achieves 58.8% accu-
racy, as opposed to 80.8% when trained on non-spurious

Figure 8: ResNet18 accuracy on the adver-
sarial test set as neurons are incrementally
ablated. Dotted line denotes pre-ablation ac-
curacy. Neurons are sorted by the model’s
validation accuracy when that single neuron
is ablated, then ablated in that order. When
ablating neurons that select for the spurious
text, the accuracy improves by 4.9 points.
When zeroing arbitrary neurons, accuracy
still improves, but by much less.

data. MILAN identifies 300 text-related convolutional
units (out of 1024 examined) in the model, confirming
that the model has indeed devoted substantial capacity
to identifying text labels in the image. Figure 7c shows
an example neurons specifically selective for airline and
truck text. By deleting only 13 such neurons, test accu-
racy is improved by 4.9% (a 12% reduction in error rate).4
This increase cannot be explained by the sorting proce-
dure described above: if instead we sort all neurons ac-
cording to validation accuracy (orange line), accuracy im-
proves by less than 1%. Thus, while this experiment does
not completely eliminate the model’s reliance on text fea-
tures, it shows that MILAN’s predictions enable direct
editing of networks to partially mitigate sensitivity to
spurious feature correlations.

8 CONCLUSIONS

We have presented MILAN, an approach for automatically labeling neurons with natural language
descriptions of their behavior. MILAN selects these descriptions by maximizing pointwise mutual
information with image regions in which each neuron is active. These mutual information esti-
mates are in turn produced by a pair of learned models trained on MILANNOTATIONS, a dataset of
fine-grained image annotations released with this paper. Descriptions generated by MILAN surface
diverse aspects of model behavior, and can serve as a foundation for numerous analysis, auditing,
and editing techniques workflows for users of deep network models.

ETHICS STATEMENT

In contrast to most past work on neuron labeling, MILAN generates neuron labels using another
black-box learned model trained on human annotations of visual concepts. With this increase in
expressive power come a number of potential limitations: exemplar-based explanations have known
shortcomings (Bolukbasi et al., 2021), human annotations of exemplar sets may be noisy, and the

4Stopping criteria are discussed more in Appendix E; if no adversarial data is used to determine the number
of neurons to prune, an improvement of 3.1% is still achievable.

9

m i t
Auditing models

88

Under review as a conference paper at ICLR 2022

units contribute to non-robust model behavior Mu & Andreas (2020). Finally, Figure 4 highlights
that neurons satisfying each criterion are not evenly distributed across layers—for example, middle
layers contain the largest fraction of relation-selective neurons measured via prepositions.

6 AUDITING ANONYMIZED MODELS

One recent line of work in computer vision aims to construct privacy-aware datasets, e.g. by de-
tecting and blurring all faces to avoid leakage of information about specific individuals into trained
models (Yang et al., 2021). But to what extent does this form of anonymization actually reduce

Figure 5: Change in # of
face neurons found by MI-
LAN. Blurring reduces, but
does not eliminate, units se-
lective for unblurred faces.

models’ reliance on images of humans? We wish to understand if models
trained on blurred data still construct features that can identify specific
individuals, or that select for specific demographic categories. A core
function of tools for interpretable machine learning is to enable auditing
of trained models for such behavior; here, we apply MILAN to investigate
the effectiveness of blurring-based dataset privacy.

Method We use MILAN to caption a subset of convolutional units in
12 different models pretrained for image classification on the blurred
ImageNet images (blurred models). These models are distributed by the
original authors of the blurred ImageNet dataset (Yang et al., 2021). We
caption the same units in models pretrained on regular ImageNet (un-
blurred models) obtained from torchvision (Paszke et al., 2019). We
then manually inspect all neurons in the blurred and unblurred models
for which MILAN descriptions contain the words face, head, nose, eyes,
and mouth (using exemplar sets containing only unblurred images).

A Study of Face Obfuscation in ImageNet

Figure 1. Most categories in ImageNet Challenge (Russakovsky et al., 2015) are not people categories. However, the images contain
many people co-occurring with the object of interest, posing a potential privacy threat. These are example images from barber chair,
husky, beer bottle, volleyball and military uniform.

Effects of face obfuscation on classification accuracy.
Obfuscating sensitive image areas is widely used for pre-
serving privacy (McPherson et al., 2016). Using our face
annotations and a typical obfuscation strategy: blurring
(Fig. 1), we construct a face-blurred version of ILSVRC.
What are the effects of using it for image classification?
At first glance, it seems inconsequential—one should still
recognize a car even when the people inside have their faces
blurred. However, to the best of our knowledge, this has
not been thoroughly analyzed. By benchmarking various
deep neural networks on original images and face-blurred
images, we report insights about the effects of face blurring.

The validation accuracy drops only slightly (0.13%–0.68%)
when using face-blurred images to train and evaluate. It is
hardly surprising since face blurring could remove informa-
tion useful for classifying some images. However, the result
assures us that we can train privacy-aware visual classifiers
on ILSVRC with less than 1% accuracy drop.

Breaking the overall accuracy into individual categories in
ILSVRC, we observe that they are impacted by face blur-
ring differently. Some categories incur significantly larger
accuracy drop, including categories with a large fraction of
blurred area, and categories whose objects are often close
to faces, e.g., mask and harmonica.

Our results demonstrate the utility of face-blurred ILSVRC
for benchmarking. It enhances privacy with only a marginal
accuracy drop. Models trained on it perform competitively
with models trained on the original ILSVRC dataset.

Effects on feature transferability. Besides a classifi-
cation benchmark, ILSVRC also serves as pretraining
data for transferring to domains where labeled images are
scarce (Girshick, 2015; Liu et al., 2015a). So a further ques-
tion is: Does face obfuscation hurt the transferability of
visual features learned from ILSVRC?

We investigate this question by pretraining models on the
original/blurred images and finetuning on 4 downstream
tasks: object recognition on CIFAR-10 (Krizhevsky et al.,
2009), scene recognition on SUN (Xiao et al., 2010), object
detection on PASCAL VOC (Everingham et al., 2010), and
face attribute classification on CelebA (Liu et al., 2015b).
They include both classification and spatial localization, as

well as both face-centric and face-agnostic recognition.

In all of the 4 tasks, models pretrained on face-blurred
images perform closely with models pretrained on original
images. We do not see a statistically significant difference
between them, suggesting that visual features learned from
face-blurred pretraining are equally transferable. Again, this
encourages us to adopt face obfuscation as an additional
protection on visual recognition datasets without worrying
about detrimental effects on the dataset’s utility.

Contributions. Our contributions are twofold. First, we
obtain accurate face annotations in ILSVRC, which facil-
itates subsequent research on privacy protection. We will
release the code and the annotations. Second, to the best of
our knowledge, we are the first to investigate the effects of
privacy-aware face obfuscation on large-scale visual recog-
nition. Through extensive experiments, we demonstrate that
training on face-blurred does not significantly compromise
accuracy on both image classification and downstream tasks,
while providing some privacy protection. Therefore, we ad-
vocate for face obfuscation to be included in ImageNet and
to become a standard step in future dataset creation efforts.

2. Related Work
Privacy-preserving machine learning (PPML). Ma-
chine learning frequently uses private datasets (Chen et al.,
2019b). Research in PPML is concerned with an adversary
trying to infer the private data. It can happen to the trained
model. For example, model inversion attack recovers sensi-
tive attributes (e.g., gender, genotype) of an individual given
the model’s output (Fredrikson et al., 2014; 2015; Hamm,
2017; Li et al., 2019; Wu et al., 2019). Membership infer-
ence attack infers whether an individual was included in
training (Shokri et al., 2017; Nasr et al., 2019; Hisamoto
et al., 2020). Training data extraction attack extracts verba-
tim training data from the model (Carlini et al., 2019; 2020).
For defending against these attacks, differential privacy is a
general framework (Abadi et al., 2016; Chaudhuri & Mon-
teleoni, 2008; McMahan et al., 2018; Jayaraman & Evans,
2019; Jagielski et al., 2020). It requires the model to behave
similarly whether or not an individual is in the training data.

Privacy breaches can also happen during training/inference.

(a)

(b)

(c)

Faces of people

Human faces

Figure 6: (a) The blurred ImageNet dataset.
(b–c) Exemplar sets and labels for two neu-
rons in a blurred model that activate on un-
blurred faces—and appear to preferentially
(but not exclusively) respond to faces in spe-
cific demographic categories.

Results Across models trained on ordinary ImageNet,
MILAN identified 213 neurons selective for human faces.
Across models trained on blurred ImageNet, MILAN iden-
tified 142 neurons selective for human faces. MILAN can
distinguish between models trained on blurred and
unblurred data (Fig. 5). However, it also reveals that
models trained on blurred data acquire neurons selec-
tive for unblurred faces. Indeed, it is possible to use
MILAN’s labels to extract these face-selective neurons di-
rectly. Doing so reveals that several of them are not sim-
ply face detectors, but select for specific, protected at-
tributes such as gender and ethnicity (Fig. 6). Blurring
does not prevent models from extracting highly specific
features for these attributes. Our results in this section
highlight the use of MILAN for both quantitative and qual-
itative, human-in-the loop auditing of model behavior.

7 EDITING SPURIOUS FEATURES

Spurious correlations between features and labels are a persistent problem in machine learning
applications, especially in the presence of mismatches between training and testing data (Storkey,
2009). In object recognition, one frequent example is correlation between backgrounds and objects
(e.g. cows are more likely to appear with green grass in the background, while fish are more likely
to appear with a blue background; Xiao et al. 2020). In a more recent example, models trained on
joint text and image data are subject to “text-based adversarial attacks”, in which e.g. an apple with
the word iPod written on it is classified as an iPod (Goh et al., 2021). Our final experiment shows
that MILAN can be used to reduce models’ sensitivity to these spurious features.

Data We create a controlled dataset imitating Goh et al. (2021)’s spurious text features. The
dataset consists of 10 ImageNet classes. In the training split, there are 1000 images per class; 500
are annotated with (correct) text labels in the top-left corner. The test set contains 100 images per

8

Blurred ImageNet [Yang et al. 2021]

m i t

Under review as a conference paper at ICLR 2022

units contribute to non-robust model behavior Mu & Andreas (2020). Finally, Figure 4 highlights
that neurons satisfying each criterion are not evenly distributed across layers—for example, middle
layers contain the largest fraction of relation-selective neurons measured via prepositions.

6 AUDITING ANONYMIZED MODELS

One recent line of work in computer vision aims to construct privacy-aware datasets, e.g. by de-
tecting and blurring all faces to avoid leakage of information about specific individuals into trained
models (Yang et al., 2021). But to what extent does this form of anonymization actually reduce

Figure 5: Change in # of
face neurons found by MI-
LAN. Blurring reduces, but
does not eliminate, units se-
lective for unblurred faces.

models’ reliance on images of humans? We wish to understand if models
trained on blurred data still construct features that can identify specific
individuals, or that select for specific demographic categories. A core
function of tools for interpretable machine learning is to enable auditing
of trained models for such behavior; here, we apply MILAN to investigate
the effectiveness of blurring-based dataset privacy.

Method We use MILAN to caption a subset of convolutional units in
12 different models pretrained for image classification on the blurred
ImageNet images (blurred models). These models are distributed by the
original authors of the blurred ImageNet dataset (Yang et al., 2021). We
caption the same units in models pretrained on regular ImageNet (un-
blurred models) obtained from torchvision (Paszke et al., 2019). We
then manually inspect all neurons in the blurred and unblurred models
for which MILAN descriptions contain the words face, head, nose, eyes,
and mouth (using exemplar sets containing only unblurred images).

A Study of Face Obfuscation in ImageNet

Figure 1. Most categories in ImageNet Challenge (Russakovsky et al., 2015) are not people categories. However, the images contain
many people co-occurring with the object of interest, posing a potential privacy threat. These are example images from barber chair,
husky, beer bottle, volleyball and military uniform.

Effects of face obfuscation on classification accuracy.
Obfuscating sensitive image areas is widely used for pre-
serving privacy (McPherson et al., 2016). Using our face
annotations and a typical obfuscation strategy: blurring
(Fig. 1), we construct a face-blurred version of ILSVRC.
What are the effects of using it for image classification?
At first glance, it seems inconsequential—one should still
recognize a car even when the people inside have their faces
blurred. However, to the best of our knowledge, this has
not been thoroughly analyzed. By benchmarking various
deep neural networks on original images and face-blurred
images, we report insights about the effects of face blurring.

The validation accuracy drops only slightly (0.13%–0.68%)
when using face-blurred images to train and evaluate. It is
hardly surprising since face blurring could remove informa-
tion useful for classifying some images. However, the result
assures us that we can train privacy-aware visual classifiers
on ILSVRC with less than 1% accuracy drop.

Breaking the overall accuracy into individual categories in
ILSVRC, we observe that they are impacted by face blur-
ring differently. Some categories incur significantly larger
accuracy drop, including categories with a large fraction of
blurred area, and categories whose objects are often close
to faces, e.g., mask and harmonica.

Our results demonstrate the utility of face-blurred ILSVRC
for benchmarking. It enhances privacy with only a marginal
accuracy drop. Models trained on it perform competitively
with models trained on the original ILSVRC dataset.

Effects on feature transferability. Besides a classifi-
cation benchmark, ILSVRC also serves as pretraining
data for transferring to domains where labeled images are
scarce (Girshick, 2015; Liu et al., 2015a). So a further ques-
tion is: Does face obfuscation hurt the transferability of
visual features learned from ILSVRC?

We investigate this question by pretraining models on the
original/blurred images and finetuning on 4 downstream
tasks: object recognition on CIFAR-10 (Krizhevsky et al.,
2009), scene recognition on SUN (Xiao et al., 2010), object
detection on PASCAL VOC (Everingham et al., 2010), and
face attribute classification on CelebA (Liu et al., 2015b).
They include both classification and spatial localization, as

well as both face-centric and face-agnostic recognition.

In all of the 4 tasks, models pretrained on face-blurred
images perform closely with models pretrained on original
images. We do not see a statistically significant difference
between them, suggesting that visual features learned from
face-blurred pretraining are equally transferable. Again, this
encourages us to adopt face obfuscation as an additional
protection on visual recognition datasets without worrying
about detrimental effects on the dataset’s utility.

Contributions. Our contributions are twofold. First, we
obtain accurate face annotations in ILSVRC, which facil-
itates subsequent research on privacy protection. We will
release the code and the annotations. Second, to the best of
our knowledge, we are the first to investigate the effects of
privacy-aware face obfuscation on large-scale visual recog-
nition. Through extensive experiments, we demonstrate that
training on face-blurred does not significantly compromise
accuracy on both image classification and downstream tasks,
while providing some privacy protection. Therefore, we ad-
vocate for face obfuscation to be included in ImageNet and
to become a standard step in future dataset creation efforts.

2. Related Work
Privacy-preserving machine learning (PPML). Ma-
chine learning frequently uses private datasets (Chen et al.,
2019b). Research in PPML is concerned with an adversary
trying to infer the private data. It can happen to the trained
model. For example, model inversion attack recovers sensi-
tive attributes (e.g., gender, genotype) of an individual given
the model’s output (Fredrikson et al., 2014; 2015; Hamm,
2017; Li et al., 2019; Wu et al., 2019). Membership infer-
ence attack infers whether an individual was included in
training (Shokri et al., 2017; Nasr et al., 2019; Hisamoto
et al., 2020). Training data extraction attack extracts verba-
tim training data from the model (Carlini et al., 2019; 2020).
For defending against these attacks, differential privacy is a
general framework (Abadi et al., 2016; Chaudhuri & Mon-
teleoni, 2008; McMahan et al., 2018; Jayaraman & Evans,
2019; Jagielski et al., 2020). It requires the model to behave
similarly whether or not an individual is in the training data.

Privacy breaches can also happen during training/inference.

(a)

(b)

(c)

Faces of people

Human faces

Figure 6: (a) The blurred ImageNet dataset.
(b–c) Exemplar sets and labels for two neu-
rons in a blurred model that activate on un-
blurred faces—and appear to preferentially
(but not exclusively) respond to faces in spe-
cific demographic categories.

Results Across models trained on ordinary ImageNet,
MILAN identified 213 neurons selective for human faces.
Across models trained on blurred ImageNet, MILAN iden-
tified 142 neurons selective for human faces. MILAN can
distinguish between models trained on blurred and
unblurred data (Fig. 5). However, it also reveals that
models trained on blurred data acquire neurons selec-
tive for unblurred faces. Indeed, it is possible to use
MILAN’s labels to extract these face-selective neurons di-
rectly. Doing so reveals that several of them are not sim-
ply face detectors, but select for specific, protected at-
tributes such as gender and ethnicity (Fig. 6). Blurring
does not prevent models from extracting highly specific
features for these attributes. Our results in this section
highlight the use of MILAN for both quantitative and qual-
itative, human-in-the loop auditing of model behavior.

7 EDITING SPURIOUS FEATURES

Spurious correlations between features and labels are a persistent problem in machine learning
applications, especially in the presence of mismatches between training and testing data (Storkey,
2009). In object recognition, one frequent example is correlation between backgrounds and objects
(e.g. cows are more likely to appear with green grass in the background, while fish are more likely
to appear with a blue background; Xiao et al. 2020). In a more recent example, models trained on
joint text and image data are subject to “text-based adversarial attacks”, in which e.g. an apple with
the word iPod written on it is classified as an iPod (Goh et al., 2021). Our final experiment shows
that MILAN can be used to reduce models’ sensitivity to these spurious features.

Data We create a controlled dataset imitating Goh et al. (2021)’s spurious text features. The
dataset consists of 10 ImageNet classes. In the training split, there are 1000 images per class; 500
are annotated with (correct) text labels in the top-left corner. The test set contains 100 images per

8

Auditing models

89

Blurring reduces the number

of face-sensitive neurons 
across 12 models…

m i t

Under review as a conference paper at ICLR 2022

units contribute to non-robust model behavior Mu & Andreas (2020). Finally, Figure 4 highlights
that neurons satisfying each criterion are not evenly distributed across layers—for example, middle
layers contain the largest fraction of relation-selective neurons measured via prepositions.

6 AUDITING ANONYMIZED MODELS

One recent line of work in computer vision aims to construct privacy-aware datasets, e.g. by de-
tecting and blurring all faces to avoid leakage of information about specific individuals into trained
models (Yang et al., 2021). But to what extent does this form of anonymization actually reduce

Figure 5: Change in # of
face neurons found by MI-
LAN. Blurring reduces, but
does not eliminate, units se-
lective for unblurred faces.

models’ reliance on images of humans? We wish to understand if models
trained on blurred data still construct features that can identify specific
individuals, or that select for specific demographic categories. A core
function of tools for interpretable machine learning is to enable auditing
of trained models for such behavior; here, we apply MILAN to investigate
the effectiveness of blurring-based dataset privacy.

Method We use MILAN to caption a subset of convolutional units in
12 different models pretrained for image classification on the blurred
ImageNet images (blurred models). These models are distributed by the
original authors of the blurred ImageNet dataset (Yang et al., 2021). We
caption the same units in models pretrained on regular ImageNet (un-
blurred models) obtained from torchvision (Paszke et al., 2019). We
then manually inspect all neurons in the blurred and unblurred models
for which MILAN descriptions contain the words face, head, nose, eyes,
and mouth (using exemplar sets containing only unblurred images).

A Study of Face Obfuscation in ImageNet

Figure 1. Most categories in ImageNet Challenge (Russakovsky et al., 2015) are not people categories. However, the images contain
many people co-occurring with the object of interest, posing a potential privacy threat. These are example images from barber chair,
husky, beer bottle, volleyball and military uniform.

Effects of face obfuscation on classification accuracy.
Obfuscating sensitive image areas is widely used for pre-
serving privacy (McPherson et al., 2016). Using our face
annotations and a typical obfuscation strategy: blurring
(Fig. 1), we construct a face-blurred version of ILSVRC.
What are the effects of using it for image classification?
At first glance, it seems inconsequential—one should still
recognize a car even when the people inside have their faces
blurred. However, to the best of our knowledge, this has
not been thoroughly analyzed. By benchmarking various
deep neural networks on original images and face-blurred
images, we report insights about the effects of face blurring.

The validation accuracy drops only slightly (0.13%–0.68%)
when using face-blurred images to train and evaluate. It is
hardly surprising since face blurring could remove informa-
tion useful for classifying some images. However, the result
assures us that we can train privacy-aware visual classifiers
on ILSVRC with less than 1% accuracy drop.

Breaking the overall accuracy into individual categories in
ILSVRC, we observe that they are impacted by face blur-
ring differently. Some categories incur significantly larger
accuracy drop, including categories with a large fraction of
blurred area, and categories whose objects are often close
to faces, e.g., mask and harmonica.

Our results demonstrate the utility of face-blurred ILSVRC
for benchmarking. It enhances privacy with only a marginal
accuracy drop. Models trained on it perform competitively
with models trained on the original ILSVRC dataset.

Effects on feature transferability. Besides a classifi-
cation benchmark, ILSVRC also serves as pretraining
data for transferring to domains where labeled images are
scarce (Girshick, 2015; Liu et al., 2015a). So a further ques-
tion is: Does face obfuscation hurt the transferability of
visual features learned from ILSVRC?

We investigate this question by pretraining models on the
original/blurred images and finetuning on 4 downstream
tasks: object recognition on CIFAR-10 (Krizhevsky et al.,
2009), scene recognition on SUN (Xiao et al., 2010), object
detection on PASCAL VOC (Everingham et al., 2010), and
face attribute classification on CelebA (Liu et al., 2015b).
They include both classification and spatial localization, as

well as both face-centric and face-agnostic recognition.

In all of the 4 tasks, models pretrained on face-blurred
images perform closely with models pretrained on original
images. We do not see a statistically significant difference
between them, suggesting that visual features learned from
face-blurred pretraining are equally transferable. Again, this
encourages us to adopt face obfuscation as an additional
protection on visual recognition datasets without worrying
about detrimental effects on the dataset’s utility.

Contributions. Our contributions are twofold. First, we
obtain accurate face annotations in ILSVRC, which facil-
itates subsequent research on privacy protection. We will
release the code and the annotations. Second, to the best of
our knowledge, we are the first to investigate the effects of
privacy-aware face obfuscation on large-scale visual recog-
nition. Through extensive experiments, we demonstrate that
training on face-blurred does not significantly compromise
accuracy on both image classification and downstream tasks,
while providing some privacy protection. Therefore, we ad-
vocate for face obfuscation to be included in ImageNet and
to become a standard step in future dataset creation efforts.

2. Related Work
Privacy-preserving machine learning (PPML). Ma-
chine learning frequently uses private datasets (Chen et al.,
2019b). Research in PPML is concerned with an adversary
trying to infer the private data. It can happen to the trained
model. For example, model inversion attack recovers sensi-
tive attributes (e.g., gender, genotype) of an individual given
the model’s output (Fredrikson et al., 2014; 2015; Hamm,
2017; Li et al., 2019; Wu et al., 2019). Membership infer-
ence attack infers whether an individual was included in
training (Shokri et al., 2017; Nasr et al., 2019; Hisamoto
et al., 2020). Training data extraction attack extracts verba-
tim training data from the model (Carlini et al., 2019; 2020).
For defending against these attacks, differential privacy is a
general framework (Abadi et al., 2016; Chaudhuri & Mon-
teleoni, 2008; McMahan et al., 2018; Jayaraman & Evans,
2019; Jagielski et al., 2020). It requires the model to behave
similarly whether or not an individual is in the training data.

Privacy breaches can also happen during training/inference.

(a)

(b)

(c)

Faces of people

Human faces

Figure 6: (a) The blurred ImageNet dataset.
(b–c) Exemplar sets and labels for two neu-
rons in a blurred model that activate on un-
blurred faces—and appear to preferentially
(but not exclusively) respond to faces in spe-
cific demographic categories.

Results Across models trained on ordinary ImageNet,
MILAN identified 213 neurons selective for human faces.
Across models trained on blurred ImageNet, MILAN iden-
tified 142 neurons selective for human faces. MILAN can
distinguish between models trained on blurred and
unblurred data (Fig. 5). However, it also reveals that
models trained on blurred data acquire neurons selec-
tive for unblurred faces. Indeed, it is possible to use
MILAN’s labels to extract these face-selective neurons di-
rectly. Doing so reveals that several of them are not sim-
ply face detectors, but select for specific, protected at-
tributes such as gender and ethnicity (Fig. 6). Blurring
does not prevent models from extracting highly specific
features for these attributes. Our results in this section
highlight the use of MILAN for both quantitative and qual-
itative, human-in-the loop auditing of model behavior.

7 EDITING SPURIOUS FEATURES

Spurious correlations between features and labels are a persistent problem in machine learning
applications, especially in the presence of mismatches between training and testing data (Storkey,
2009). In object recognition, one frequent example is correlation between backgrounds and objects
(e.g. cows are more likely to appear with green grass in the background, while fish are more likely
to appear with a blue background; Xiao et al. 2020). In a more recent example, models trained on
joint text and image data are subject to “text-based adversarial attacks”, in which e.g. an apple with
the word iPod written on it is classified as an iPod (Goh et al., 2021). Our final experiment shows
that MILAN can be used to reduce models’ sensitivity to these spurious features.

Data We create a controlled dataset imitating Goh et al. (2021)’s spurious text features. The
dataset consists of 10 ImageNet classes. In the training split, there are 1000 images per class; 500
are annotated with (correct) text labels in the top-left corner. The test set contains 100 images per

8

142 face-selective neurons across 12 models trained on blurred faces.

Auditing models

90

…but not entirely!

m i t
Adversarial examples

91

m i t
Adversarial examples in NLP

92

Figure 8: “copy-paste” adversarial examples for vision. For each scene (with 3 example images at
bottom), the neuron that contribute most (by connection weight) are shown, along with their length
3 explanations. We target the bold explanations to crudely modify an input image and change the
prediction towards/away from the scene. In the top-right corner, the left-most image is presented to
the model (with predictions from 4 models shown); we modify the image to the right-most image,
which changes the model prediction(s).

Unit 39 (nobody in hypothesis)

hyp:nobody AND (NOT pre:hair) AND (NOT
pre:RB) AND (NOT pre:’s)
IoU 0.465 wentail -0.117 wneutral -0.053 wcontra 0.047

Pre Three women prepare a meal in a kitchen.
Orig Hyp The ladies are cooking.
Adv Hyp Nobody but the ladies are cooking.
True entail → neutral Pred entail → contra

Unit 133 (couch words in hypothesis)

NEIGHBORS(hyp:couch) OR hyp:inside OR
hyp:home OR hyp:indoors OR hype:eating
IoU 0.202 wentail -0.125 wneutral -0.024 wcontra 0.088

Pre 5 women sit around a table doing some crafts.
Orig Hyp 5 women sit around a table.
Adv Hyp 5 women sit around a table near a couch.
True entail→ neutral Pred entail → contra

Unit 15 (sitting only in hypothesis)

hyp:eating OR hyp:sitting OR hyp:sleeping OR
hyp:sits AND (NOT pre:sits)
IoU 0.239 wentail -0.083 wneutral -0.059 wcontra 0.086

Orig Pre A blond woman is holding 2 golf balls while
reaching down into a golf hole.

Adv Pre A blond woman is holding 2 golf balls.
Hyp A blond woman is sitting down.
True contra → neutral Pred contra → contra

Unit 941 (inside/indoors in hypothesis)

hyp:inside OR hyp:not OR hyp:indoors OR
hyp:moving OR hyp:something
IoU 0.151 wentail 0.086 wneutral -0.030 wcontra -0.023

Orig Pre Two people are sitting in a station.
Adv Pre Two people are sitting in a pool.
Hyp A couple of people are inside and not standing.
True entail→ neutral Pred entail→ entail

adv adv

adv adv

adv adv

advadv

Figure 9: “copy-paste” adversarial examples for NLI. Taking an example from SNLI, we construct
an adversarial (adv) premise or hypothesis which changes the true label and results in an incorrect

model prediction (original label/prediction adv��! adversarial label/prediction).

sensible; water, foliage, and rivers contribute to a swimming hole prediction; houses, staircases, and
fire escape (objects) contribute to fire escape (scene). However, the explanations in bold involve
polysemanticity or spurious correlations. In these cases, we found it is possible to construct a
“copy-paste” example which uses the neuron explanation to predictably alter the prediction.2 In some
cases, these adversarial examples are generalizable across networks besides the probed ResNet-18,
causing the same behavior across AlexNet [24], ResNet-50 [15], and DenseNet-161 [21], all trained
on Places365. For example, one major contributor to the swimming hole scene (top-left) is a neuron
that fires for non-blue water; making the water blue switches the prediction to grotto in many models.
The consistency of this misclassification suggests that models are detecting underlying biases in the

2Appendix B tests sensitivity of these examples to size and position of the copy-pasted subimages.

7

hypothesis contains: synonyms of couch or one of
inside, indoors, home, eating.

Figure 8: “copy-paste” adversarial examples for vision. For each scene (with 3 example images at
bottom), the neuron that contribute most (by connection weight) are shown, along with their length
3 explanations. We target the bold explanations to crudely modify an input image and change the
prediction towards/away from the scene. In the top-right corner, the left-most image is presented to
the model (with predictions from 4 models shown); we modify the image to the right-most image,
which changes the model prediction(s).

Unit 39 (nobody in hypothesis)

hyp:nobody AND (NOT pre:hair) AND (NOT
pre:RB) AND (NOT pre:’s)
IoU 0.465 wentail -0.117 wneutral -0.053 wcontra 0.047

Pre Three women prepare a meal in a kitchen.
Orig Hyp The ladies are cooking.
Adv Hyp Nobody but the ladies are cooking.
True entail → neutral Pred entail → contra

Unit 133 (couch words in hypothesis)

NEIGHBORS(hyp:couch) OR hyp:inside OR
hyp:home OR hyp:indoors OR hype:eating
IoU 0.202 wentail -0.125 wneutral -0.024 wcontra 0.088

Pre 5 women sit around a table doing some crafts.
Orig Hyp 5 women sit around a table.
Adv Hyp 5 women sit around a table near a couch.
True entail→ neutral Pred entail → contra

Unit 15 (sitting only in hypothesis)

hyp:eating OR hyp:sitting OR hyp:sleeping OR
hyp:sits AND (NOT pre:sits)
IoU 0.239 wentail -0.083 wneutral -0.059 wcontra 0.086

Orig Pre A blond woman is holding 2 golf balls while
reaching down into a golf hole.

Adv Pre A blond woman is holding 2 golf balls.
Hyp A blond woman is sitting down.
True contra → neutral Pred contra → contra

Unit 941 (inside/indoors in hypothesis)

hyp:inside OR hyp:not OR hyp:indoors OR
hyp:moving OR hyp:something
IoU 0.151 wentail 0.086 wneutral -0.030 wcontra -0.023

Orig Pre Two people are sitting in a station.
Adv Pre Two people are sitting in a pool.
Hyp A couple of people are inside and not standing.
True entail→ neutral Pred entail→ entail

adv adv

adv adv

adv adv

advadv

Figure 9: “copy-paste” adversarial examples for NLI. Taking an example from SNLI, we construct
an adversarial (adv) premise or hypothesis which changes the true label and results in an incorrect

model prediction (original label/prediction adv��! adversarial label/prediction).

sensible; water, foliage, and rivers contribute to a swimming hole prediction; houses, staircases, and
fire escape (objects) contribute to fire escape (scene). However, the explanations in bold involve
polysemanticity or spurious correlations. In these cases, we found it is possible to construct a
“copy-paste” example which uses the neuron explanation to predictably alter the prediction.2 In some
cases, these adversarial examples are generalizable across networks besides the probed ResNet-18,
causing the same behavior across AlexNet [24], ResNet-50 [15], and DenseNet-161 [21], all trained
on Places365. For example, one major contributor to the swimming hole scene (top-left) is a neuron
that fires for non-blue water; making the water blue switches the prediction to grotto in many models.
The consistency of this misclassification suggests that models are detecting underlying biases in the

2Appendix B tests sensitivity of these examples to size and position of the copy-pasted subimages.

7

hypothesis contains eating, sitting, sleeping, or sits and 
premise does not contain sits

m i t
Explainability and model accuracy

93

NLI. NLI IoU scores reveal a similar trend (Figure 3, right): as we increase the maximum formula166

length, we account for more behavior, though scores continue increasing past length 30. However,167

short explanations are already useful: Figure 6 (and Figure 9, explained later) show example length 5168

explanations. Many neurons correspond to simple decision rules based mostly on lexical features: for169

example, several neurons are gender sensitive (Unit 870), and activate for contradiction when the170

premise, but not the hypothesis, contains the word man. Others fire for verbs that are often associated171

with a specific label, such as sitting, eating, or sleeping. Many of these words have high172

pointwise mutual information (PMI) with the class prediction; as noted by [14], the top two highest173

words by PMI with contradiction are sleeping (Unit 15) and nobody (Unit 39, Figure 9). Still others174

(Unit 99) fire when there is high lexical overlap between premise and hypothesis, another heuristic175

noted in the literature [25]. Finally, there are neurons that are not well explained by this feature set176

(Unit 473). In general, we have found evidence that many neurons correspond to the kinds of simple177

heuristics [14, 25] that make NLI models brittle to out-of-distribution data [13, 22, 37]. Here, we178

demonstrate these heuristics are actually reified as individual features in deep representations.179

5 Do interpretable neurons contribute to model accuracy?180

0.76

0.80

0.84

0.88

0.2 0.4 0.6
IoU

SN
LI

 a
cc

NLI

0.4

0.6

0.8

0.1 0.2
IoU

Ac
cu

ra
cy

 w
he

n
fir

in
g

Vision

−0.65

−0.60

−0.55

−0.50

0 10 20 30
Max formula length

C
or

re
la

tio
n

0.225

0.250

0.275

0.300

0 10 20 30
Max formula length

C
or

re
la

tio
n

Figure 7: Top: neuron IoU versus model accu-
racy over inputs where the neuron is active for
vision (length 10) and NLI (length 3). Bottom:
Pearson correlation between these quantities
versus max formula length.

A natural question to ask is whether it is empirically181

desirable to have more (or less) interpretable neurons,182

with respect to the kinds of concepts identified above.183

To answer this, we measure the performance of the184

entire model on the task of interest when the neuron185

is activated. In other words, for neuron n, what is186

the model accuracy on predictions for inputs where187

Mn(x) = 1? In image classification, we find that188

the more interpretable the neuron (by IoU), the more189

accurate the model is when the neuron is active (Fig-190

ure 7, left; r = 0.31, p < 1e � 13); the correlation191

increases as the formula length increases and we are192

better able to explain neuron behavior. Given that we193

are measuring abstractions over the human-annotated194

features deemed relevant for scene classification, this195

suggests, perhaps unsurprisingly, that neurons that196

detect more interpretable concepts are more accurate.197

However, when we apply the same analysis to the198

NLI model, the opposite trend occurs: neurons that199

we are better able to explain are less accurate (Figure 7, right; r = �0.60, p < 1e�08). Unlike vision,200

most sentence-level logical descriptions recoverable by our approach are spurious by definition, as201

they are too simple compared to the true reasoning required for NLI. If a neuron can be accurately202

summarized by simple deterministic rules, this suggests the neuron is making decisions based on203

spurious correlations, which is reflected by the lower performance. Analogously, the more restricted204

our feature set (by maximum formula length), the better we capture this anticorrelation. One important205

takeaway is that the “interpretability” of these explanations is not a priori correlated with performance,206

but rather dependent on the concepts we are searching for: given the right concept space, our method207

can identify behaviors that may be correlated or anticorrelated with task performance.208

6 Can we target explanations to change model behavior?209

Finally, we see whether compositional explanations allow us to manipulate model behavior. In both210

models, we have probed the final hidden representation before a final softmax layer produces the class211

predictions. Thus, we can measure a neuron’s contribution to a specific class with the weight between212

the neuron and the class, and see whether constructing examples that activate (or inhibit) these neurons213

leads to corresponding changes in predictions. We call these “copy-paste” adversarial examples to214

differentiate them from standard adversarial examples involving imperceptible perturbations [36].215

Image Classification. Figure 8 shows some Places365 classes along with the neurons that most216

contribute to the class as measured by the connection weight. In many cases, these connections are217

6

Description match

Language

m i t
Explainability and model accuracy

94

NLI. NLI IoU scores reveal a similar trend (Figure 3, right): as we increase the maximum formula166

length, we account for more behavior, though scores continue increasing past length 30. However,167

short explanations are already useful: Figure 6 (and Figure 9, explained later) show example length 5168

explanations. Many neurons correspond to simple decision rules based mostly on lexical features: for169

example, several neurons are gender sensitive (Unit 870), and activate for contradiction when the170

premise, but not the hypothesis, contains the word man. Others fire for verbs that are often associated171

with a specific label, such as sitting, eating, or sleeping. Many of these words have high172

pointwise mutual information (PMI) with the class prediction; as noted by [14], the top two highest173

words by PMI with contradiction are sleeping (Unit 15) and nobody (Unit 39, Figure 9). Still others174

(Unit 99) fire when there is high lexical overlap between premise and hypothesis, another heuristic175

noted in the literature [25]. Finally, there are neurons that are not well explained by this feature set176

(Unit 473). In general, we have found evidence that many neurons correspond to the kinds of simple177

heuristics [14, 25] that make NLI models brittle to out-of-distribution data [13, 22, 37]. Here, we178

demonstrate these heuristics are actually reified as individual features in deep representations.179

5 Do interpretable neurons contribute to model accuracy?180

0.76

0.80

0.84

0.88

0.2 0.4 0.6
IoU

SN
LI

 a
cc

NLI

0.4

0.6

0.8

0.1 0.2
IoU

Ac
cu

ra
cy

 w
he

n
fir

in
g

Vision

−0.65

−0.60

−0.55

−0.50

0 10 20 30
Max formula length

C
or

re
la

tio
n

0.225

0.250

0.275

0.300

0 10 20 30
Max formula length

C
or

re
la

tio
n

Figure 7: Top: neuron IoU versus model accu-
racy over inputs where the neuron is active for
vision (length 10) and NLI (length 3). Bottom:
Pearson correlation between these quantities
versus max formula length.

A natural question to ask is whether it is empirically181

desirable to have more (or less) interpretable neurons,182

with respect to the kinds of concepts identified above.183

To answer this, we measure the performance of the184

entire model on the task of interest when the neuron185

is activated. In other words, for neuron n, what is186

the model accuracy on predictions for inputs where187

Mn(x) = 1? In image classification, we find that188

the more interpretable the neuron (by IoU), the more189

accurate the model is when the neuron is active (Fig-190

ure 7, left; r = 0.31, p < 1e � 13); the correlation191

increases as the formula length increases and we are192

better able to explain neuron behavior. Given that we193

are measuring abstractions over the human-annotated194

features deemed relevant for scene classification, this195

suggests, perhaps unsurprisingly, that neurons that196

detect more interpretable concepts are more accurate.197

However, when we apply the same analysis to the198

NLI model, the opposite trend occurs: neurons that199

we are better able to explain are less accurate (Figure 7, right; r = �0.60, p < 1e�08). Unlike vision,200

most sentence-level logical descriptions recoverable by our approach are spurious by definition, as201

they are too simple compared to the true reasoning required for NLI. If a neuron can be accurately202

summarized by simple deterministic rules, this suggests the neuron is making decisions based on203

spurious correlations, which is reflected by the lower performance. Analogously, the more restricted204

our feature set (by maximum formula length), the better we capture this anticorrelation. One important205

takeaway is that the “interpretability” of these explanations is not a priori correlated with performance,206

but rather dependent on the concepts we are searching for: given the right concept space, our method207

can identify behaviors that may be correlated or anticorrelated with task performance.208

6 Can we target explanations to change model behavior?209

Finally, we see whether compositional explanations allow us to manipulate model behavior. In both210

models, we have probed the final hidden representation before a final softmax layer produces the class211

predictions. Thus, we can measure a neuron’s contribution to a specific class with the weight between212

the neuron and the class, and see whether constructing examples that activate (or inhibit) these neurons213

leads to corresponding changes in predictions. We call these “copy-paste” adversarial examples to214

differentiate them from standard adversarial examples involving imperceptible perturbations [36].215

Image Classification. Figure 8 shows some Places365 classes along with the neurons that most216

contribute to the class as measured by the connection weight. In many cases, these connections are217

6

better explanations

worse predictions!
↓

Language

m i t
The next challenge: relevant explanation

Green and yellow animals, a yellow smiley face, and a
firefighter's head and jacket.

The heads of animals

about animals

foods in the packet

Dog and fox eyes.

This is a animal head.

Body part of the birds

The bottom portions of faces of animals.

Dog heads with black and white.

Anything that has the color blue in it.

These are animal heads.

These are animal heads.

about animals

This is showing both parts of animals and parts of
wheels.

The color white

These are diagonal lines.

Shifting contrast colors, either light-dark-light or dark-
light-dark.

Doors, windows, and see-through objects.

Turtle shells and regular overlapping patterns are  

Red clothing, vehicles, plants, and objects.

Human skin

The black areas are highlighted in the images.

The images show body coverings of animals including
fur, feathers, hair, and claws.

It shows an image that has a bit of white in it.

These are flowers and animal fur.

This regions is that is being highlighted are spots.

eyes and mouth

face of all animals

This is fruit and other circles.

Face of dogs

Dog faces and bodies.

The face area is highlighted in the images.

eyes and beak

People's faces and other body parts.

Green grass, plants, and objects.

This is black and white grids.

yellow spots surrounded by uniform colors

body of the dogs

arches

all the above are in green color

All objects are rounded

This is text.

The regions depict lines, some of which radiate from a
center.

They are the west or 9 o'clock sections of circular
objects that contain concentric rings.

This is the area above dots.

They are brownish fur.

Texts and blue or yellow areas are shown.

This is very natural area of cute butterfly.

side angle part of all objects

letters of the all images

Objects with curved edges.

Core hours are set the times when everyone must be
outside in the office.The rest of the working hours is
flexible.

All images are made up of the colors red and white

They are circular objects.

Blue colored objects.

Animal skins are in the image

The shiny white part of various objects.

They are the midsections of animals or objects

Eyes of various animals, eye-like patterns on

various objects and animals.

Generating explanations: summary

What: Automatic natural language labels for every neuron in a
deep network.

How: Textual summaries of neuron visualizations using program
synthesis & image captioning techniques.

Why: Neuron explanations surface adversarial vulnerabilities,
expose sensitive features, improve model robustness.

m i t
Toward natural language supervision

97

Learning to
explain

Learning from
demonstrations

Learning from
observations

turn(90) (f24 5 (λ
(X) (get/set 
(λ (y) (f2 1
(f41 5 y)))

x)) z)

grasp

…

dog
faces &
wheels

Effective & efficient natural language supervision is possible for lots of
interesting learning problems!

Thank you!

Lio 
Wong

Pratyusha 
Sharma

Evan 
Hernandez

Teona 
Bagashvili

Jesse 
Mu

Sarah 
Schwettmann

m i t
Text-based image editing

99

original

original (a) “purple flowers” (b) “horizontal lines”

(d) “empty road”(c) “cloudy white sky”

Force neurons with the desired label to activate:

controlled manipulation of image content!

m i t

original

original (a) “purple flowers” (b) “horizontal lines”

(d) “empty road”(c) “cloudy white sky”

Text-based image editing by activating descriptions

100

