Model-agnostic and Scalable Counterfactual Explanations via Reinforcement Learning

Robert-Florian Samoilescu^{1,2}, Arnaud Van Looveren¹, Janis Klaise¹

¹Seldon Technologies Ltd., ²University Politehnica of Bucharest

Motivation

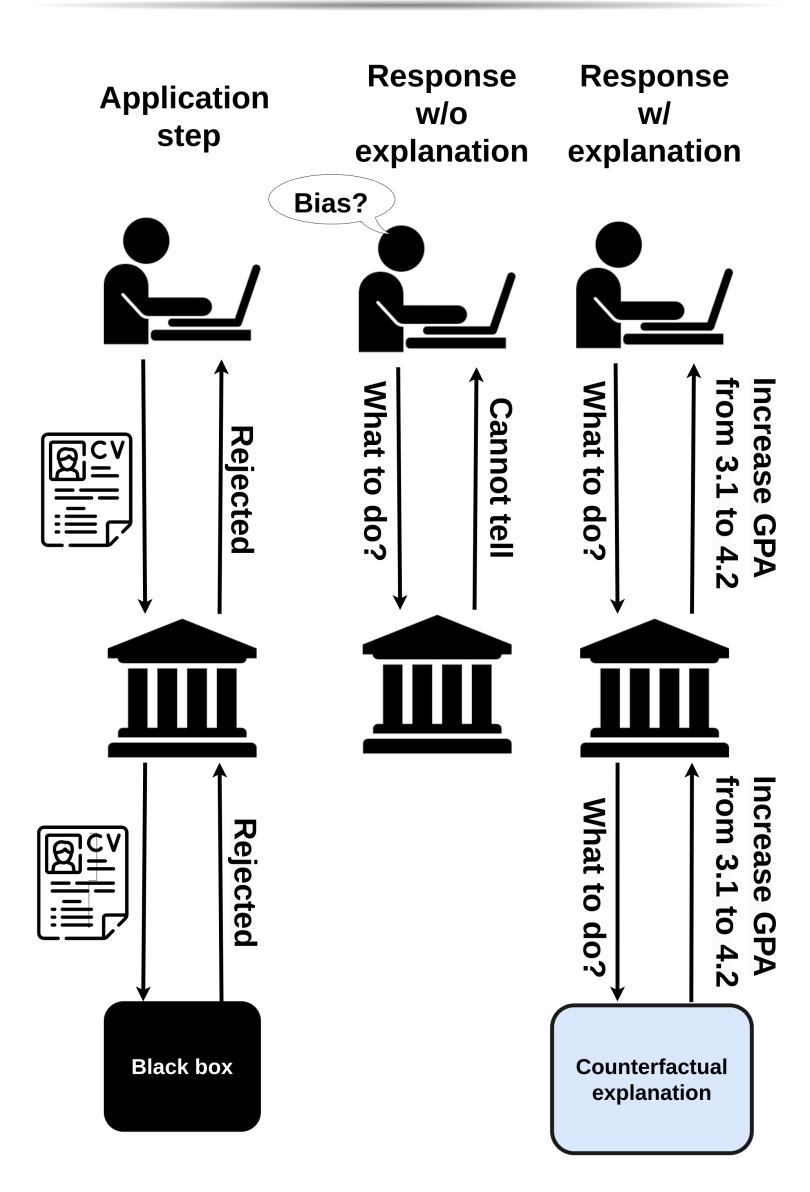


Figure 1:Rejection response to an university application.

What are counterfactuals?

Counterfactual:

• minimal necessary change in the input space to alter the prediction.

To be practical:

- sparse close to the input instance.
- in-distribution indistinguishable from real instances.
- diverse multiple options.

Desirable properties

- immutable features (e.g., gender, race).
- feature constraints.

Current limitations

Iterative procedures:

• separate, computationally expensive optimization per instance.

Access to gradients:

- operate only in the white-box regime.
- not practical for tabular data (SoTARandom Forest, XGBoost).

Do not allow feature conditioning:

- sensitive immutable features are changed.
- lead to unactionable recourse (e.g., decrease age).

Example

	IN	CF	Condition
Age	40	40	[40, 45]
Workclass	Private	Private	{Private, Federal-gov, Self-emp-inc}
Education	ligh School grad	Masters {	[High School grad, Bachelors, Masters]
Marital Status	Married	Married	{Married}
Occupation	Sales	White-Collar	{Sales, White-Collar, Admin}
Relationship	Husband	Husband	{Husband}
Race	White	White	{White}
Sex	Male	Male	{Male}
Capital Gain	0	0	[0, 0]
Capital Loss	0	0	[0, 0]
Hours per week	60	60	[60, 60]
Country	Latin-America	Latin-America	{Latin-America}
Prediction	≤ \$50k/y	> \$50k/y	

Figure 2:Conditional counterfactual instance on Adult dataset.

Our contributions

- Model-agnostic, target-conditional framework primarily focused on heterogeneous tabular datasets.
- Flexible feature range constraints for numerical and categorical features.
- Fast counterfactual generation process.
- Easily extendable framework to other data modalities (e.g. images).

Reinforcement learning training pipeline

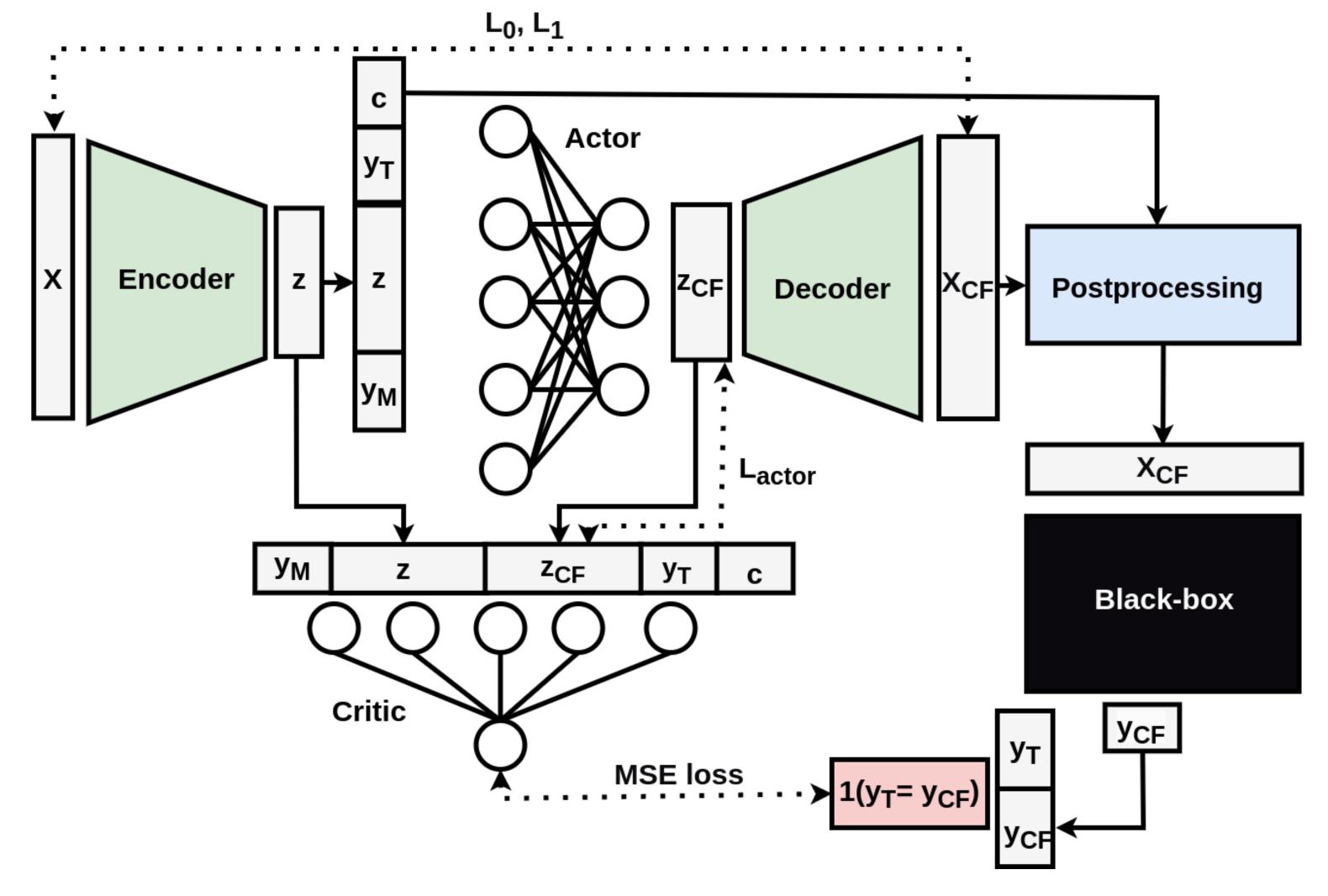


Figure 3:Generative model training pipeline using RL for counterfactual generation.

Diversity

	IN	CF(1)	CF(2)	CF(3)		
Age	40	40	40	40		
Workclass	Private	Private	Private	Private		
Education	Masters	Dropout	Masters H	High School grad		
Marital Status	Married	Married	Married	Married		
Occupation	White-Collar	Service	Professional	Sales		
Relationship	Husband	Husband	Husband	Husband		
Race	White	White	White	White		
Sex	Male	Male	Male	Male		
Capital Gain	0	0	0	0		
Capital Loss	0	0	0	0		
Hours per week	40	40	28	32		
Country	United-States	United-States	United-States	United-States		
Prediction	> \$50k/y	≤ \$50k/y	≤ \$50k/y	≤ \$50k/y		

Figure 4:Diverse counterfactual instances via feature conditioning subsampling.

Validity

Table 1:Percentage of generated counterfactuals of the desired target label - higher is better.

	Validity (%)				
Method	Adult	Cancer	Portug.	Spam.	
LORE	18.08	25.95	19.07	9.53	
MO	91.00	100.00	100.00	100.00	
DiCE(r)	99.93	100.00	99.98	99.58	
DiCE(g)	33.94	60.86	90.97	40.93	
Ours	98.59	99.24	98.27	99.18	

Sparsity

Table 2: \mathcal{L}_0 and \mathcal{L}_1 distance - lower is better.

Method	$\overline{\mathbf{Ad}}$	ult	Cancer	Por	tug.	Spam
	\mathcal{L}_0	\mathcal{L}_1	\mathcal{L}_0	\mathcal{L}_0	\mathcal{L}_1	\mathcal{L}_1
LORE	0.09	0.11	0.11	0.04	0.12	0.09
MO	0.20	0.39	0.53	0.22	0.31	0.30
DiCE(r)	0.05	1.76	0.29	0.07	1.39	0.28
DiCE(g)	0.18	0.09	0.56	0.23	0.60	0.31
Ours	0.11	0.19	0.44	0.23	0.15	0.17

In-distributioness

Table 3:Negative class conditional MMD - lower is better.

	$MMD_0^2 (10^{-1})$			
Method	Adult	Cancer	Portug.	Spam.
LORE	0.31	1.09	0.08	0.26
MO	0.45	0.50	0.16	0.61
DiCE(r)	0.56	1.03	1.75	0.80
DiCE(g)	0.28	0.85	0.68	0.25
Ours	0.36	0.36	0.10	0.32

Other data modalities

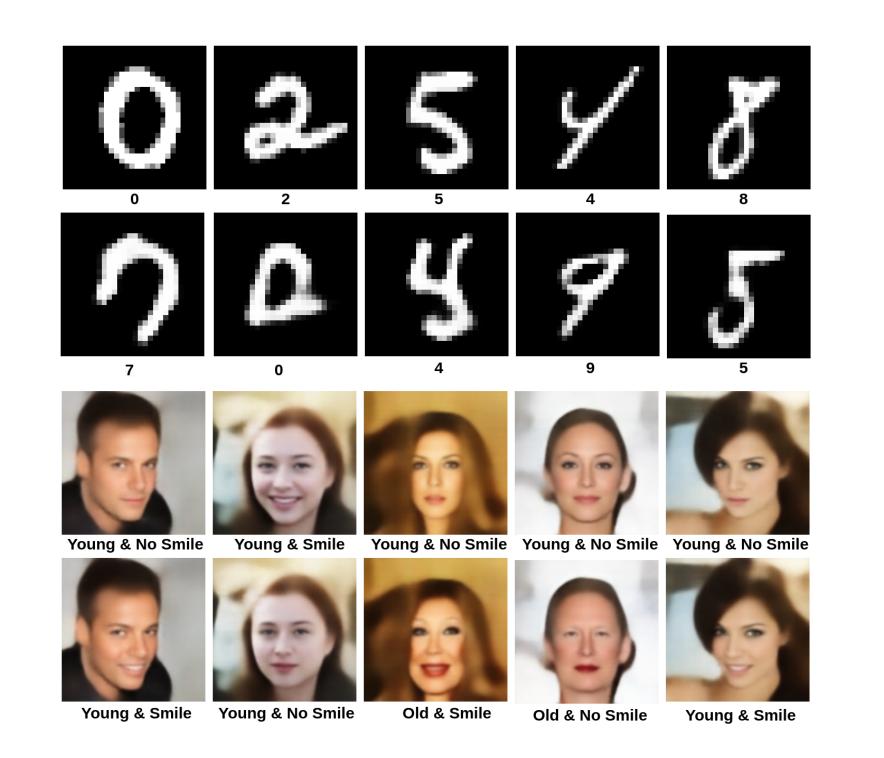


Figure 5:MNIST (top half) and CelebA (bottom half) counterfactual instances.

