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Introduction Results

In our paper, we evaluate Concept Bottleneck Models (CBMs) [1], a type of Deep Neural Network that first maps Relevancy i§ ger]erally distributed
raw Input(s) to a vector of human-defined concepts, before using this vector to predict a final classification. We over the entire bird and_the same
analyse what input features the model uses for concept predictions and which predicted concepts contribute to input features can p_rec!lct different
the final classification. concepts, as shown in figure 1.
Contributions We believe the dataset is not

confining the model to learn concepts

1.Provide an understanding of the input features the models use from both the input image and predicted concepts. ~s ntended

2.Introduce a quantitative evaluation to measure the distance between the maximum input feature relevance and the
ground truth location and perform this with multiple relevancy techniques. Figure 2 shows the average distance

3.We propose using the proportion of relevance as a measurement for explaining concept importance. of saliency to the ground truth
location. The distance is around 100
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Figure 2: The average distance of all explanation techniques are too far from the ground concepts to final classifications.
truth locations for the model to be focusing on the correct input features. » Evaluating CBMs with a non-
relevance-based method.
 Studying the effectiveness of CBMs
and explanations in a human studly.
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(d) Joint with sigmoid

Figure 3: The concept to final classification model part primarily uses concept predicted as present although, for the sequential model and joint without sigmoid model,
concepts predicted as present have negative relevance.
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