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Motivation

Current explainability frameworks (LIME, SHAP):
1) Lack a reliable quantitative definition of explainability

2) Aren’t evaluated on a true ground truth measure

3) Fail to account for multi-way feature interactions

Contributions

i.  The concept of feature (in)stability as a measure of explainability of the output of

a model

ii. A synthetic model with deterministic ground truth multi-way feature explainability
to evaluate explainability frameworks

iii. An informed stability descent based search algorithm as an attempt to quantifying
multi-way feature stability, or importance, for a given binary prediction

iv. A feature importance ranking evaluation loss function capable of comparing one-
way feature explainability frameworks to more expressive frameworks (DFEST)
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* Feature instability is a measure of post-hoc explainability that explains the
feature interactions responsible for a given input source’s prediction

* f;is unstable and f, is stable w.r.t. the model and any given input (x,) to
the model, representing a 1-way feature interaction, as only 1 feature is

relevant

Synthetic Ground Truth Model
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Feature-Interaction Cluster Determination
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Input z, = (f1, ..
cluster = [0, . .

if {0 >0 then
cluster|fmaz] =1
else
cluster|fmaz] = —1
end if
for f; € f do
if |f’3;%|§ 2 then
if f; > 0 then
cluster(f;] =1
else
cluster(f;] = —1
end if
end if
end for
return cluster as ¢, =0

Algorithm 3

* An inherently explainable n-dimensional decision space is generated, such
that the distance from the origin (0,0) to a unique feature cluster i.e. (1,0)
or (1,1) is predetermined, with distances to the decision boundary
increasing as the block distance from the minimum cluster increases

* Provides a ranked list of the most unstable features, with quantitative
instability values derived from the distance, queryable by XAl methods

DFEST: Feature Stability
Descent and Tensor Search

DFEST is a post-hoc XAl method to identify the k-most
unstable feature-interaction clusters through:

(1) Uniform Distribution Search, followed by

(2) Informed Cluster Search
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DFEST Evaluation With Synthetic Ground Truth Model
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D= 03(fz) o_3(f;) Vi € d and V f; € training set
= nSteps vdeD

F=iVdeD
featSteps =(lfy,- -
9 = BBF(z;)
for 0 — k do
= Normalize(Rand(0,1) Vi € n)
for step € nSteps do
z, = (T, X featSteps|step|) + x
y' = BBF(z,)
11: if § # ¢/ then
12: z4.distance = A (x5, z,)
13: Ry insert(x,)
14: end if
15:  end for
16: end for
17: return Ry =0
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Algorithm 1

Search over the decision space has a time complexity of O(n¥)

To gain heuristics for an informed search method, sparse solutions
of clusters giving an opposite model output are identified
surrounding the model output to be explained in decision space

Heuristics are identified via generation of an even distribution of
points on the surface of an n-sphere

Informed CIuster S arch

Informed cluster search is
implemented as A* search over
the priority queue of solutions
discovered above

Uniformly distributed heuristics
enable random restarts, as
adjacent cluster feature stability
(gradient) descent toward the
inner decision boundary is
performed

Results: Top Feature Interaction Clusters
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Descending Ranked Feature Clusters Identified by DFEST

The 50 most unstable feature-interaction clusters demonstrates that the clusters with the highest
instability tend to have the same core unstable features, i.e. the MOST unstable features in each cluster

DFEST Feature Importance (Aggregation)

LIME Feature Importance
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Comparison of DFEST & LIME Loss

: . ) k Precursor | Time Precursor k A* Time A*
d Dimensions | Ranking Loss . . . .
Solutions Solutions (s) Solutions | Solutions (s)
DFEST 0.167 1,000 0.14 1,000 0.06
LIME 2 3.3125 5,000 1.08
Random 0.9375
DFEST 0.0625 1,000 0.31 100 0.15
LIME 4 1.594 5,000 1.7
Random 0.75
DFEST 0.141 10,000 #8305 1,000 3.94
LIME 8 0.718 10,000 3.59
Random 0.875
DFEST 0.0234 100 0.054 1,000 4.0449
LIME 16 0.7031 10,000 7.825
Random 0.90625
DFEST 0.4065 100,000 48.68 1,000 11.3
LIME 32 0.6718 10,000 14.35
Random 0.855
DFEST 0.5351 100,000 33.221 5,000 156.87
LIME 64 0.648 1,000,000 28.23
Random 0.867
DFEST 0.634 300,000 412.34 5,000 1138.85
LIME 128 0.675 1,000,000 55.21
Random 0.875
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Conclusion

* The loss function accounts for both cluster variability
and feature instability magnitude, given continuous
input features

* The synthetic ground truth model with deterministic
feature instability offers a trustworthy benchmark for
the development and evaluation of future XAl methods

 DFEST demonstrates a method to quantify the impact of
multi-way feature interactions on a model’s output,
which is inherently out of scope for current feature
attribution methods which perform local linear function
approximation



