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Motivation DFEST: Feature Stability 
Descent and Tensor Search 

Synthetic Ground Truth Model

Uniform Distribution Search

Informed Cluster Search

Results: Top Feature Interaction Clusters

DFEST Feature Importance (Aggregation) LIME Feature Importance

Descending Ranked Feature Clusters Identified by DFEST

Contributions

Current explainability frameworks (LIME, SHAP):
1) Lack a reliable quantitative definition of explainability
2) Aren’t evaluated on a true ground truth measure
3) Fail to account for multi-way feature interactions DFEST is a post-hoc XAI method to identify the k-most 

unstable feature-interaction clusters through:
(1) Uniform Distribution Search, followed by
(2) Informed Cluster Searchi. The concept of feature (in)stability as a measure of explainability of the output of 

a model

ii. A synthetic model with deterministic ground truth multi-way feature explainability 
to evaluate explainability frameworks

iii. An informed stability descent based search algorithm as an attempt to quantifying 
multi-way feature stability, or importance, for a given binary prediction

iv. A feature importance ranking evaluation loss function capable of comparing one-
way feature explainability frameworks to more expressive frameworks (DFEST)

• Feature instability is a measure of post-hoc explainability that explains the 
feature interactions responsible for a given input source’s prediction

• f1 is unstable and f2 is stable w.r.t. the model and any given input (xq) to 
the model, representing a 1-way feature interaction, as only 1 feature is 
relevant

Feature Instability
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Feature-Interaction Cluster Determination 

Figure 2b Algorithm 3

• An inherently explainable n-dimensional decision space is generated, such 
that the distance from the origin (0,0) to a unique feature cluster i.e. (1,0) 
or (1,1) is predetermined, with distances to the decision boundary 
increasing as the block distance from the minimum cluster increases

• Provides a ranked list of the most unstable features, with quantitative 
instability values derived from the distance, queryable by XAI methods

• Search over the decision space has a time complexity of O(nk)

• To gain heuristics for an informed search method, sparse solutions 
of clusters giving an opposite model output are identified 
surrounding the model output to be explained in decision space

• Heuristics are identified via generation of an even distribution of 
points on the surface of an n-sphere

• Informed cluster search is 
implemented as A* search over 
the priority queue of solutions 
discovered above

• Uniformly distributed heuristics 
enable random restarts, as 
adjacent cluster feature stability 
(gradient) descent toward the 
inner decision boundary is 
performed

DFEST Evaluation With Synthetic Ground Truth Model
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The 50 most unstable feature-interaction clusters demonstrates that the clusters with the highest 
instability tend to have the same core unstable features, i.e. the MOST unstable features in each cluster

Equation 3
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Comparison of DFEST & LIME Loss Conclusion
• The loss function accounts for both cluster variability 

and feature instability magnitude, given continuous 
input features

• The synthetic ground truth model with deterministic 
feature instability offers a trustworthy benchmark for 
the development and evaluation of future XAI methods

• DFEST demonstrates a method to quantify the impact of 
multi-way feature interactions on a model’s output, 
which is inherently out of scope for current feature 
attribution methods which perform local linear function 
approximation


