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Motivation
● Synthetic data is increasingly powering advances in 

machine learning (ML)1,2,3 
● Not always clear whether human perceptual 

judgments of synthetically-generated exampes match 
the generative process used to create them 

HSE 2: Conditioned on    , what do 
humans perceive to be a good as    ?

HSE 1: What     do humans believe 
matches a given    ? 

Problem Setting

Learning with Automatic Label Policy 
Grounded in Human Inferences

Elicitation (N = 81)
● 2070 mixed images 
● Tell people the underlying labels
● Ask to infer the mixing coefficient, and 

provide their confidence in estimate
Findings
● Discrepancies elucidated between humans’ 

internal models of synthetically-generated 
data vs. label mixing policy used in mixup

● In aggregate + individual-level misalignment

● mixup4 is an effective regularizer, which trains on linear 
combinations of examples

● Examples constructed via data and label mixing policies

● Our Approach: Study human perception of the 
generative process through two human subject 
experiment (HSE) paradigms

Learning with Human Relabelings

Elicitation (N = 70)
● Elicit perceived 50/50 point over 249 

pairs of mixed CIFAR-1011 examples
● Employ different elicitation interfaces

○ Construct: press arrow keys to select 
mixed image

○ Select-Shuffled: choose from a 
shuffled set of mixed images 
■ Controls for order effects 

● Can we align the labeling of mixed images to human perception to 
learn better category boundaries?

Eq 1: Data mixing policy Eq 2: Label mixing policy
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Fig 7: Aggregate human-inferred mixing coeff 
(blue) vs. mixup (red) 

Fig 4: Individual 
endorsements of the 

perceived 50/50 point 

Table 1: Evaluating on 
CIFAR-10H11,12 holdout, with 
and without human feedback

Fig 1: Example mixed image

Why care about human 
percepts of synthetic data 
generation? 
● Further ensure model reliability 

and trustworthiness
● Realigning may improve 

downstream model performance
● Help guard against gamification 

and manipulation 

● First step: consider 
synthetic examples 
used in mixup4

Why mixup?
● Simple data generation: access to “ground truth” parameterization
● Powerful technique and popular baseline5,6,7

● Cognitive neuroscience suggests likely misalignment8,9,10

Fig 2: Synthetic data generative process used in mixup

Fig 3: Generic 
elicitation paradigm 

Findings 
● In general, humans recover 50/50 mix
● But nuanced picture at individual-level 

suggests misalignment
● Decent agreement across interfaces 

Fig 5: Example consensus misalignment of 50/50

Fig 6: Generic 
elicitation 
paradigm 

● How can we go beyond the constraint of finite human labelings for an 
infinite set of possible synthetic examples? 

● Category boundaries have diverse structures, many non-linear — can 
we leverage capture this structure in mixup label policy?  

 

Set-up
● Fit logistic function to each category pair 
● Compare learning with transformed
      mixing coefficient against
      classicial, full mixup4

Set-up
● Augment training set with mixed 

images and constructed labels
● Explore levering averaged 

human relabelngs without 
confidence

● And leveraging elicited human 
confidence (⍵) to smooth 
between a uniform distribution 
and the averaged human 
relabeling

Table 2: Comparing automated full relabeling 
schemes 

Fig 9: Example inferred mixing coefficient for category pairs

Takeaways
● Human percepts not consistently aligned with data generation used in mixup

○ When considering both data and label mixing policy 
● Relabeling with human percepts, particularly when leveraging human 

confidence, has potential to improve downstream model performance 
Fig 8: Example synthetic image-level 

relabelings 


