

Human-in-the-loop *mixup*

Katherine M. Collins*, Umang Bhatt, Weiyang Liu, Vihari Piratla, Bradley Love, Adrian Weller

*kmc61@cam.ac.uk

Motivation

- Synthetic data is increasingly powering advances in machine learning (ML)^{1,2,3}
- Not always clear whether human perceptual judgments of synthetically-generated exampes match the generative process used to create them
- First step: consider synthetic examples used in *mixup*⁴

Fig 1: Example mixed image

Why care about human percepts of synthetic data generation?

- Further ensure model reliability and trustworthiness
- Realigning may improve downstream model performance Help guard against gamification
- and manipulation

Why mixup?

- Simple data generation: access to "ground truth" parameterization
- Powerful technique and popular baseline^{5,6,7}
- Cognitive neuroscience suggests likely misalignment^{8,9,10}

Problem Setting

- mixup⁴ is an effective regularizer, which trains on linear combinations of examples
- Examples constructed via data and label mixing policies

• Our Approach: Study human perception of the generative process through two human subject experiment (HSE) paradigms

HSE 1: What $\tilde{\chi}$ do humans believe matches a given \tilde{v} ?

 Elicit perceived 50/50 point over 249 pairs of mixed CIFAR-10¹¹ examples

Elicitation (N = 70)

- Employ different elicitation interfaces
- **Construct:** press arrow keys to select mixed image
- Select-Shuffled: choose from a shuffled set of mixed images
 - Controls for order effects

Findings

- In general, humans recover 50/50 mix
- But nuanced picture at individual-level suggests misalignment
- Decent agreement across interfaces

Fig 5: Example consensus misalignment of 50/50

HSE 2: Conditioned on $\tilde{\chi}$, what do humans perceive to be a good as \tilde{v} ?

- Elicitation (N = 81)
- 2070 mixed images
- Tell people the underlying labels
- Ask to infer the mixing coefficient, and provide their confidence in estimate

Findings

- Discrepancies elucidated between humans' internal models of synthetically-generated data vs. label mixing policy used in mixup
- In aggregate + individual-level misalignment

• And leveraging elicited human confidence (w) to smooth between a uniform distribution and the averaged human

learn better category boundaries?

Label Type CE FGSM Calibration Regular (No Aug) 2.02 ± 0.12 13.12 ± 2.65 0.28±0.011 + Random Labels 2.11±0.13 1281+284 0.24±0.014 12.71+2.79 0.25+0.012 + Uniform Labels 2.16 ± 0.14 mixup Labels 1.65 ± 0.11 10.62+2.44 0.23+0.005 + Ours (Avg Relabelings) 1.78 ± 0.12 11.69+2.90 0.24+0.009 Ours (Avg with ω) 1.48+0.06 8.89+1.59 0.19+0.001

Table 1: Evaluating on CIFAR-10H^{11,12} holdout, with and without human feedback

Learning with Automatic Label Policy **Grounded in Human Inferences**

Learning with Human Relabelings

• Can we align the labeling of mixed images to human perception to

- How can we go beyond the constraint of finite human labelings for an infinite set of possible synthetic examples?
- Category boundaries have diverse structures, many non-linear can we leverage capture this structure in mixup label policy?

Set-up Fig 9: Example inferred mixing coefficient for category pairs

- Fit logistic function to each category pair
- · Compare learning with transformed mixing coefficient against classicial, full mixup⁴

Label Policy	CE	FGSM	Calibratior
mixup	1.15 ± 0.08	7.46 ± 2.40	$0.10 {\pm} 0.01$
Human-Fits (Ours)	1.16 ± 0.08	7.32 ± 2.27	0.10 ± 0.01

Table 2: Comparing automated full relabeling schemes

Takeaways

- Human percepts not consistently aligned with data generation used in mixup • When considering both data and label mixing policy
- Relabeling with human percepts, particularly when leveraging human confidence, has potential to improve downstream model performance

Presented at The AAAI 2023 Workshop on Representation Learning for Responsible Human-Centric Al

perceived 50/50 point

Fig 6: Generic

elicitation

paradigm

Fig 4: Individual endorsements of the

Augment training set with mixed images and constructed labels • Explore levering averaged

Set-up