

# Temporal Supervised Contrastive Learning with Applications to Tabular Time Series Data

Shahriar Noroozizadeh, Jeremy C. Weiss, George H. Chen

snoroozi@andrew.cmu.edu, jeremy.weiss@nih.gov, georgechen@cmu.edu



## Introduction: Supervised Contrastive Learning

## Contrastive Learning:

- "Similar" data points have close embeddings
- "Dissimilar" data points have their embeddings far apart
- Classification Extension  $\rightarrow$  Supervised Contrastive Learning



Temporal-SCL:

- Extending SCL to incorporate temporal dynamics
- Learning the embedding representation of time series at individual time step level

## Main Contributions of Temporal-SCL

## Temporal-SCL Framework Learns the embedding space with following properties:

- Predictive
- Temporally smooth
- Diverse in capturing raw feature heterogeneity

Clustering-based heatmap visualization relating the embedding space to both raw features and to prediction outcomes.

## Experimental Findings:

- Temporal-SCL correctly recovers the underlying ground truth embedding structure of a synthetic dataset
- In two real-world clinical datasets, Temporal-SCL achieves competitive accuracy compared to various baselines

## **Real-world Clinical Datasets:**

#### MIMIC Dataset (Static Outcome):

- Time series data of septic patients
- 18,354 septic patients
- Observed mortality rate ~20%
- Each time series has a sinale classification label

## ADNI Dataset (Dynamic Outcome):

- Longitudinal data tracking the progression of Alzheimer's disease
- 11,651 hospital visits from 1,346 patients
- Different classification label at each timestep

# **Temporal-SCL Framework:**

Temporal-SCL consists of 3 networks:

- Encoder network (f)
- Map each time step features (snapshots) to an embedding Predictor network (a)
- Maps the embeddings predicted class probabilities • Temporal network (h)
  - Encourgaing temporal smoothness of embeddings



$$L_{\rm overall} = L_{\rm SCL-snapshots} + \alpha L_{\rm temp}.$$
  
• Supervised contrastive loss:

$$\begin{aligned} &\text{For the construction of the costs,} \\ &\text{For the set of the costs,} \end{aligned} \\ &\text{For the cost of the costs,} \end{aligned} \\ & = -\sum_{i=1}^{n} \log \left[ \frac{\exp(\langle f(\mathbf{x}_{i}^{(\ell)}), f(\mathbf{x}_{i''}^{(\ell')}) \rangle / \tau)}{\sum_{(\mathbf{x}_{i''}^{(\ell')}) \in \mathcal{V}_{\text{max}}} \exp(\langle f(\mathbf{x}_{i}^{(\ell)}), f(\mathbf{x}_{i''}^{(\ell')}) \rangle / \tau)} \right] \end{aligned}$$

$$((\mathbf{x}_{i}^{(\ell)}, y_{i}^{(\ell)}), (\mathbf{x}_{i}^{(\ell')}, y_{i}^{(\ell')})) \in \mathcal{E}_{\text{back}} \quad \text{s.t.} (i'', \ell'') \neq (i, \ell)$$
• Temporal-Smoothness loss:
$$\mathbf{x}_{i} = \frac{N}{L_{i} - 1}$$

$$L_{\text{temp-reg}} \coloneqq \frac{1}{N} \sum_{i=1}^{N} \frac{1}{L_i - 1} \sum_{\ell=1}^{L_i - 1} \left\| h\big( (\mathbf{z}_i^{(1)}, \delta_i^{(1)}), \dots, (\mathbf{z}_i^{(\ell)}, \delta_i^{(\ell)}) \big) - \mathbf{z}_i^{(\ell+1)} \right\|^2$$

## Synthetic Data Experiment:

| Model                        | AUROC               | AUPRC               | Recovery |
|------------------------------|---------------------|---------------------|----------|
| Logistic Regression          | $0.902 \pm 0.010$   | $0.900 \pm 0.003$   | 0/10     |
| LSTM                         | $0.951 \pm 0.008$   | $0.948 {\pm} 0.002$ | 0/10     |
| RETAIN                       | $0.951 {\pm} 0.008$ | $0.948 {\pm} 0.002$ | 2/10     |
| DIPOLE                       | $0.951 \pm 0.008$   | $0.948 {\pm} 0.002$ | 3/10     |
| AC-TPC                       | $0.951 \pm 0.008$   | $0.948 {\pm} 0.002$ | 0/10     |
| Transformer:BERT             | $0.951 \pm 0.008$   | $0.948 {\pm} 0.002$ | 1/10     |
| SIMPLE-SCL                   | $0.805 \pm 0.007$   | $0.804 {\pm} 0.002$ | 0/10     |
| TEMPORAL-SCL (no pretrain)   | $0.950 \pm 0.009$   | $0.944 {\pm} 0.004$ | 2/10     |
| TEMPORAL-SCL (no NN pairing) | $0.951 \pm 0.008$   | $0.948 {\pm} 0.002$ | 0/10     |
| TEMPORAL-SCL (full)          | $0.951 \pm 0.008$   | $0.948 {\pm} 0.002$ | 10/10    |



- Share the same classification outcome
- Raw feature vectors are "close to each other"

Sampling approach to find pairs of "similar: snapshots based on nearest neighbor pairing Nearest neighbor pairing mechanism.



(c) TEMPORAL-SCL (no NN

pairing)



|                              |                     |                     |                     | 2                   |                                                            |       |        |        |        |        |        |        |         |         |                  |         |                   |                |           |       |                      |             |            |         |       |       |
|------------------------------|---------------------|---------------------|---------------------|---------------------|------------------------------------------------------------|-------|--------|--------|--------|--------|--------|--------|---------|---------|------------------|---------|-------------------|----------------|-----------|-------|----------------------|-------------|------------|---------|-------|-------|
|                              | MIMIC dataset       |                     | ADNI dataset        |                     | _                                                          | 0.018 | 0.042  | 0.095  | 0.192  | 0.267  | 0.296  | 0 382  | Fractio | n of De | ath per<br>0.523 | Cluster | (Cluster<br>0.641 | Size)<br>0.696 | 0.737     | 0.740 | 0.842                | 0.860       | 0.919      | 1.000   | 1.000 |       |
| Model                        | AUROC               | AUPRC               | AUROC               | AUPRC               | AST #0 (2.7, 30.0]                                         | (793) | (3321) | (7102) | (4154) | (1467) | (2369) | (1790) | (993)   | (128)   | (921)            | (432)   | (449)             | (273)          | (224)     | (73)  | (133)                | (50)        | (37)       | (14)    | (10)  | 1.0   |
| Logistic Regression          | $0.745 {\pm} 0.003$ | $0.499 {\pm} 0.008$ | $0.845 {\pm} 0.006$ | $0.676 \pm 0.009$   | - AST #1 (30.0, 49.4)<br>AST #2 (49.4, 24343.0)            |       |        |        |        |        |        |        |         |         |                  |         |                   | 1111200210     | 111001000 |       | CONTRACTOR OF        |             |            |         |       |       |
| LSTM                         | $0.767 {\pm} 0.003$ | $0.509 \pm 0.005$   | $0.947 {\pm} 0.002$ | $0.823 {\pm} 0.005$ | Lactate #1 (1.3, 1.5)                                      |       |        |        |        |        |        |        |         |         | _                |         |                   |                |           |       |                      |             |            |         |       | -0.1  |
| RETAIN                       | $0.730 {\pm} 0.010$ | $0.431 \pm 0.006$   | $0.884 {\pm} 0.012$ | $0.795 {\pm} 0.016$ | Lactate #3 (1.8, 20.1)                                     |       |        |        |        |        |        |        |         |         |                  |         |                   |                |           |       | in the second second | - ANN THE P | The second | WINDOW! |       |       |
| DIPOLE                       | $0.767 {\pm} 0.004$ | $0.453 {\pm} 0.003$ | $0.958 {\pm} 0.006$ | $0.824 {\pm} 0.009$ | ALT #1 (24.5, 30.0)                                        |       |        |        |        |        |        |        |         |         | _                |         |                   |                |           |       |                      |             |            |         |       | -0.6  |
| AC-TPC                       | $0.703 \pm 0.006$   | $0.432 {\pm} 0.007$ | $0.839 \pm 0.013$   | $0.681 {\pm} 0.017$ | ALT #3 (36.6, 14764.8)                                     |       |        |        |        |        |        |        |         |         |                  |         |                   |                |           |       |                      |             |            |         | inin- |       |
| Transformer:BERT             | $0.769 {\pm} 0.005$ | $0.509 \pm 0.003$   | $0.959 {\pm} 0.002$ | $0.922 {\pm} 0.003$ | Bicarbonate #1 (21.0, 24.0)                                |       |        |        |        |        |        |        |         |         |                  |         | -                 | _              |           | -     |                      |             |            |         |       | -0.4  |
| SIMPLE-SCL                   | $0.744 \pm 0.003$   | $0.486 {\pm} 0.003$ | $0.902 \pm 0.024$   | $0.796 {\pm} 0.020$ | Bicarbonate #2 (24.0, 26.0)<br>Bicarbonate #3 (26.0, 28.0) | -     |        |        |        |        |        |        |         |         |                  |         |                   |                |           |       |                      |             |            |         |       |       |
| TEMPORAL-SCL (no pretrain)   | $0.725 {\pm} 0.042$ | $0.471 \pm 0.001$   | $0.867 {\pm} 0.035$ | $0.766 {\pm} 0.050$ | INR #0 (0.6, 1.1]                                          |       |        |        |        |        |        |        |         |         |                  |         |                   |                |           |       |                      |             |            |         |       | -0.3  |
| TEMPORAL-SCL (no NN pairing) | $0.767 {\pm} 0.005$ | $0.509 \pm 0.003$   | $0.894 \pm 0.062$   | $0.807 {\pm} 0.045$ | INR #1 (1.1, 1.3)<br>INR #2 (1.3, 1.5)                     |       |        |        |        |        |        |        |         | 1       |                  |         |                   |                |           |       |                      | ·           |            |         |       |       |
| TEMPORAL-SCL (full)          | $0.763 {\pm} 0.001$ | $0.510{\pm}0.002$   | $0.961 {\pm} 0.001$ | $0.867 {\pm} 0.006$ | INR #3 (1.5, 30.0]                                         |       |        |        |        |        |        |        |         | 1       |                  |         |                   |                |           |       |                      |             |            |         | 8     | - 0.0 |

(b) Transformer

#### Conclusion:

- Presented an extension of supervised contrastive learning to handle temporal dynamics.
- Utilized nearest neighbor pairing to capture raw feature heterogeneity
- Our pairing method alleviates the need for data augmentation in tabular time series data

Future Work: Investigate when and why nearest neighbor pairing works in different applications .

## **Related Works:**

- ★ SCL (Khosla et al. 2020)
- ★ SimCLR (Chen et al., 2020)
- ★ AC-TPC (Lee and van der Schaar, 2020)

(d) TEMPORAL-SCL

- ★ BERT-based Transformer (Devlin et al., 2019)
- ★ Dynamic-DeepHit (Lee et al., 2019)
- ★ DIPOLE (Ma et al., 2017)
- ★ RETAIN (Choi et al., 2016)
- ★ TCLR (Dave et al., 2022)

| rld | Clinical            | Data E              | xperim              | ient:               |                                               |       |        |        |        |        |        |        |                  |                   |                  |                  |                  |      |
|-----|---------------------|---------------------|---------------------|---------------------|-----------------------------------------------|-------|--------|--------|--------|--------|--------|--------|------------------|-------------------|------------------|------------------|------------------|------|
|     | MIMIC dataset       |                     | ADNI                | dataset             | - 0.018                                       | 0.018 | 0.042  | 0.095  | 0.192  | 0.267  | 0.296  | 0.382  | Fractio<br>0.428 | on of De<br>0.492 | ath per<br>0.523 | Cluster<br>0.525 | (Cluste<br>0.641 | er S |
|     | AUROC               | AUPRC               | AUROC               | AUPRC               | AST #0 (2.7, 30.0]                            | (793) | (3321) | (7102) | (4154) | (1467) | (2369) | (1790) | (993)            | (128)             | (921)            | (432)            | (449)            | (2   |
| on  | 0.745±0.003         | $0.499 {\pm} 0.008$ | $0.845 {\pm} 0.006$ | 0.676±0.009         | AST #1 (30.0, 49.4)<br>AST #2 (49.4, 24343.0) |       |        |        |        |        |        |        |                  | harmon            |                  | Second           |                  |      |
|     | $0.767 {\pm} 0.003$ | $0.509 {\pm} 0.005$ | $0.947 {\pm} 0.002$ | $0.823 {\pm} 0.005$ | Lactate #1 (1.3, 1.5)                         |       |        |        | -      |        |        |        |                  |                   | -                |                  | -                |      |
|     | $0.730 {\pm} 0.010$ | $0.431 {\pm} 0.006$ | $0.884 {\pm} 0.012$ | $0.795 {\pm} 0.016$ | Lactate #3 (1.8, 20.1)                        |       |        |        |        |        |        |        |                  |                   |                  |                  |                  |      |
|     | 076710004           | 0 452 1 0 002       | 0.059 1.0.006       | 0.924 1.0.000       | ALT #1 (24.5, 20.0)                           |       | _      | _      | _      | _      |        | _      | _                |                   | -                | -                |                  |      |

(a) Ground truth