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Abstract
We provide both empirical and theoretical insights to demystify the gravity well phe-

nomenon in the optimization landscape. We start from describe the problem setup and

theoretical results (an escape time lower bound) of the Softmax Gravity Well (SGW) in the

literature. Then we move toward the understanding of a recent observation called ASR

gravity well. We provide an explanation of why normal distribution with high variance can

lead to suboptimal plateaus from an energy function point of view. We also contribute to

the empirical insights of curriculum learning by comparison of policy initialization by dif-

ferent normal distributions. Furthermore, we provide the ASR escape time lower bound to

understand the ASR gravity well theoretically. Future work includes more specific model-

ing of the reward as a function of time and quantitative evaluation of normal distribution’s

influence on policy initialization.

Introduction
Agravitywell is the result of the pull of gravity caused by a body in space. In the context of

reinforcement learning [6], the policy gradient optimizes a parameterized policy tomaximize

the long-term expected reward. Softmax transform is normally used to produce conditional

action distributions, which results in the softmax policy gradient (SPG). Softmax transform

is as the following. For θ ∈ RK , πθ = softmax(θ) is defined by

πθ(a) = exp{θ(a)}∑
a′ exp {θ (a′)}

(1)

for all a ∈ {1, . . . , K} [11].

The phenomenon “softmax gravity well (SGW)” is described as the following: gradient as-

cent trajectories are drawn toward suboptimal corners of the probability simplex and sub-

sequently slow down in their progress toward the optimal vertex. The behavior of SPG is

impacted by initialization [11]. It’s similar to the concept of saddle point in the optimization

landscape. An experiment on a Markov Decision Process (MDP) has been used to illustrate

SGW in [11] very well. The reward r is defined as

r = (b + ∆, b, . . . , b)> ∈ [0, 1]K (2)

for some b, such that ∆ > 0 is the reward gap. And an escape time lower bound has been
provided for the single state MDP setting:

Theorem
(SPG escape time lower bound [11]). In a single-state MDP, for any learning rate ηt ∈ (0, 1],
there exists an initialization of the policy πθ1 and a positive constant C , such that SPG with full

gradients cannot escape a suboptimal corner before time t0 := C
∆·πθ1(a∗):(

π∗ − πθt

)>
r ≥ 0.9 · ∆ (3)

Asingle stateMDPwith 6 actions is a simplifiedversion of real-world reinforcement learning

settings. In a three-action, multiple-state MDP setting [5], interestingly, a phenomenon

similar to softmax gravity well is also observed, which is named ASR gravity well. The goal

of this paper is to apply the theoretical and empirical insights of the softmax gravity well to

demystify the ASR gravity well.

The ASR gravity well is illustrated in Figure 1. Details of the experimental setup are in

dou2022sampling. When the policy is initialized with normal distribution with high vari-

ance, all the curves fall into a global minimum at around epoch 15. The “reverse peaks” are

very significant within five (Recall@1, Recall@2, Recall@4, Recall@8, and NMI) out of six

benchmarks. That means the phenomenon arises for both information retrieval and clus-

tering applications [2, 10, 9, 3, 5, 8]. This empirical observation coincides elegantly with

Theorem 1: a high standard deviation normal distribution can be the policy initialization of

the policy πθ1 which traps the algorithm into the plateaus which cannot escape within a

time lower bound. To understand this more clearly, we first recall that the probability

Figure 1. ASR GravityWell [5]

density function of the normal distribution has µ as the mean and σ as the standard
deviation.

From a statistical physics point of view, a high variance in the normal distribution often

leads to high energy, making molecules trap into energy wells [13, 7].

Then we dig into the details of the normal distribution of the policy initialization models.

In the Adaptive Sampling with Reward (ASR) setting [5], the policy initialization

distribution guides a sampling distribution of p (On | Oa), which builds on the distance
between negative sample On and anchor sample Oa in triplet loss construction [2, 12, 4].

A high variance normal distribution policy initialization means that at the beginning of the

sampling stage, the model will sample negative samples from a long range of distances

from the anchor sample, which includes hard, semi-hard, and easy negative samples.

However, in Figure 1, the gravity well only appears phenomenally in the normal high case,

while for the normal high initialization, the curves are relatively flat.

Curriculum learning [1] offers two empirical insights: introducing gradually more difficult

examples speeds up online training, and cleaner examples may yield better generation

faster. Comparing the curves belonging to normal high and normal low distributions, we

can see that from similar starting points, though the normal high curves fall into the

gravity wells, they end up with higher benchmarks in all six benchmarks.

So we can add a piece new insight to curriculum learning, learning broadly (from hard

negatives to easy negatives) may confuse the model in the short term and compromise

downstream tasks’ performance, but in the long run, learning broadly(normal high) will

surpass learning within a narrow range (normal low).

we provide an ASR escape time lower bound which is adjusted from theorem 1. There are

two key insights that distinguish the ASR escape time lower bound from the SPG escape

time lower bound. First, ∆(s) becomes state-dependent. Second, the reward r becomes a
bounded function of t, such that r(t) = (b1(t), b2(t), . . . , bk(t))>. As our reward is a
weighted combination of recall and NMI evaluated on a validation dataset and it evolves

over training. The proof of the theorem is in the supplementary material.

Theorem
(ASR escape time lower bound). In the multi-state MDP of the ASR setting, we use s to denote

the current state. The reward r(t) at time t is defined as r(t) = (b1(t)+∆(s), b2(t), . . . , bk(t))> ∈
[0, 1]K for bi(t), 1 ≤ i ≤ k, such that ∆(s) > 0 is the reward gap, were bi ∈ B : R → R
and ∃β, such that bi(t) ≤ β ≤ b1(t) + ∆(s). For any learning rate ηt ∈ (0, 1], there exists an

initialization of the policy πθ1 and a positive constant C , such that the ASR framework cannot

escape a suboptimal plateau before time t0 := C
∆(s)·πθ1(a∗), i.e., it will hold that(

π∗ − πθt

)>
r(t) ≥ 0.9 · ∆(s) (4)

Theorem 2 shows even ASR framework with relaxed conditions of reward, it still enjoys a

similar lower bound.

Discussion
In the above section, we first demystify the ASR gravity well from the energy function’s

viewpoint. Then we complement curriculum learning’s insights by comparison of differ-

ent normal distribution initialization. We make a first step towards understanding the ASR

gravity well theoretically by providing a new escape time lower bound. In future work, we

plan to further enhance our understanding of the “wells” from two perspectives. First, we

want to provide quantitative explanations of how normal distribution influences policy ini-

tialization. Second, we want to explore the approximation of the function r(t) and ∆(s) to
make the theory aligns more closely with empirical practice.
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